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Abstract

We quantify the welfare cost of inflation in a calibrated heterogeneous-agent model of the U.S.

economy. There are three main findings. Inflation has a small social cost; for instance, on average

agents would give up less than one percent consumption to avoid ten percent inflation. Second,

the distribution across the population of the social cost of inflation depends on the source of

heterogeneity. If agents differ in their labor productivity, then inflation does not redistribute

monetary wealth, though it hurts the more productive and benefits the less productive. Instead,

if agents differ in trading shocks, then there is equilibrium dispersion in monetary wealth and

inflation has a redistributive effect. Third, the direction of wealth redistribution depends on

whether money is the only asset in the model. If it is, then inflation benefits the poor—who hold

less-than-average balances—and hurts the rich. The converse is true if agents can insure against

consumption risk with a competing asset.
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1 Introduction

A considerable amount of theoretical work, based on disparate modeling approaches,

supports the notion that efficiency in a monetary economy hinges on a deterministic

deflationary policy known as the ‘Friedman rule.’ Yet, in practice deflationary policies

are not implemented and low predictable inflation is widely tolerated (and sometimes

advocated).

This discrepancy has motivated a literature aimed at quantifying the social cost of

inflation. Recent papers on this subject can be sorted into one of two strands. Some

studies have a representative-agent structure that display explicit micro foundations, the

so-called matching model of money in which money has an explicit medium of exchange

function and there is no role for private credit. These studies usually abstract away

from wealth heterogeneity, or assume money is the only store of value, or must do some

heavy lifting to compute analytically complex monetary distributions; for instance, see

[11, 20, 23]. A second strand includes works based on models in which money has a more

“descriptive” role, though it is not the only store of value. Examples include cash-in-

advance models with costly credit, inventory-theoretic or precautionary balances models;

e.g., see [1, 2, 14].

Our work ties these two strands of literature. We enrich the typical matching model

introducing forms of heterogeneity that generate tractable equilibrium distributions of

wealth and then accomplish a quantitative analysis. To sum up our findings, the analy-

sis suggests that, once we account for wealth heterogeneity, inflation has quantitatively

significant redistributive effects that depend on type of heterogeneity and financial struc-

ture. Initially we work under the (usual) assumption that money is the only asset. We

quantify the impact of inflation on social welfare and trace inflation’s redistributive ef-

fects for two typical sources of heterogeneity. The average welfare cost of inflation is not

far from earlier studies but the redistributive implications of such a “money-only” model

seem empirically implausible. Consequently, we introduce the option to insure against

consumption risk by means other than simply holding money. The quantitative impact of

inflation does not vary much in this augmented model, but the redistributive implications
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are more reasonable.

The model is based on the two sequential markets model in [20], with agents who trade

in large anonymous competitive markets, as in [3, 9]. In the benchmark model agents

can hold only cash to insure against consumption risk and are ex-ante heterogeneous

in their trading risk. In stationary competitive equilibrium different agent types hold

different money balances, since the ones who are more likely to trade hold more cash.

This heterogeneity disappears if nominal interest rates converge to zero. We also consider

a variant in which agents ex-ante differ in labor productivity. This case is interesting

because there is no dispersion of money holdings but only in earning profiles. We calibrate

the two variants of the benchmark model to the U.S. economy and quantify the welfare

cost of inflation. For the representative agent, we find that ten percent inflation is worth

less than one percent of consumption. This is in line with previous studies based on a

variety of models such as in [12, 16, 20, 21, 25]. The burden of inflation, however, depends

on the distribution of types and the kind of heterogeneity considered. If agents differ in

labor productivity, then everyone suffers from inflation, though the burden differs across

agent types. This is because agents can costlessly adjust their labor effort across the two

markets, in each period. Instead, if agents differ in their trading risk, then the impact of

inflation is qualitatively different. Positive inflation can in fact be welfare-increasing for

a segment of the population, i.e., those who have less than average money balances. For

these agents, inflation generates a beneficial redistribution of wealth because lump-sum

money transfers more than offset their inflation-tax burden. This result is in line with the

quantitative findings in [11] and the theoretical intuition developed in [5], in the same class

of models. However, the redistributive implications of inflation appear to be empirically

implausible; for instance, see the discussions in [2, 14].

We thus augment the model by introducing an additional nominal asset, as an alter-

native to cash. This asset can provide consumption insurance, much as money, but it can

better shield agents from the inflation tax. In this setting we find a quantitatively similar

impact of inflation on average welfare to the earlier analysis, but a redistributive effect

that is more in line with empirical evidence.

The remainder of the paper is organized as follows. Section 2 presents the model
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economy. Section 3 introduces the definition of efficiency considered throughout the paper.

Section 4 derives the stationary monetary equilibrium allocations. Section 5 discusses the

quantitative analysis for the case of a representative agent and for the different types of

heterogeneity studied. Section 6 concludes.

2 The model

The model is a variation of the one in [20]. Time is discrete, and the horizon is infinite.

There is a large population of heterogeneous infinitely-lived agents who want to consume

perishable goods and discount only even to odd dates. Thus, we work with trading cycles

indexed by t = 1, 2, ... each including an odd and an even date. There are infinitely

many spatially separated trading groups, each of which defines a market as in [9]. Every

market includes infinitely many anonymous agents who have never met before (a suitable

matching process is described in [3]). Thus, in each trading cycle agents may visits two

anonymous markets, denoted ‘one’ in the odd date and ‘two’ in the even.

On every date a single perishable consumption good can be generated by producers,

i.e., agents who can supply labor to a technology that transforms each unit of labor into

one good. Everyone can produce and consume on even dates. Instead, at the start of each

odd date agents draw i.i.d. trading shocks determining whether the agent can produce,

consume, or do neither (idle). Consuming or producing are assumed to be equally likely.

Hence, on odd dates agents face idiosyncratic trading (consumption) risk, but not on even

dates. In addition, we assume ex-ante heterogeneity, which can take one of two forms;

agents can either differ in their odd-date trading shocks or productivity. For convenience

we divide the population into two types j = H,L in proportions ρ and 1− ρ, respectively.

Even-date preferences are assumed homogeneous and quasilinear. An agent of type

j who consumes qj ≥ 0 goods and supplies xj ≥ 0 labor in market two (equivalently,

produces xj goods) has utility U(qj)− xj . On odd dates consumers of any type j derive

utility u(cj) from cj ≥ 0 consumption. Producers of type j suffer φj(y) disutility from

producing y goods, so type L agents must work longer than type H to produce the

same amount of output. The functions u, φj and U are twice continuously differentiable,
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strictly increasing, with u′′ < 0, φ′j ≥ 0 and U ′′ < 0. Also, u (0) = U (0) = φj(0) = 0

and we attach a star to the quantities that uniquely solve u′ (c) = φ′j(c) and U ′(q) = 1.

For heterogeneity in trading shocks we let φj(y) = φ(y) for j = H,L, while αj is the

probability of trading on market one for any type j agent, with 0 < αL < αH ≤ 1. For

heterogeneity in productivity we fix αj = α ∈ (0, 1) for j = H,L, and let φ′H(y) < φ′L(y)

for each y ≥ 0. Agents are price takers.

We impose a (standard) assumption of limited enforcement and limited commitment.

This means that agents have exclusive rights to their assets and endowments, so that

trading plans must be compatible with individual incentives. This together with the

frictions assumed above implies an essential role for money (see [3]) since on odd dates

trade is quid pro quo but consumers cannot produce. Thus, a consumption shock on odd

dates corresponds to a need for liquidity.

For the moment we assume there is only one asset, fiat money. A government exists

that is the sole supplier of fiat currency, of which there is an initial stock M̄ > 0. The

money stock evolves deterministically at gross rate π by means of lump-sum cash transfers

at the beginning of even dates.

3 Stationary monetary allocations

Consider the allocation selected by a planner who maximizes the agents’ lifetime utili-

ties, treating them identically, and constrained by the same physical and informational

restrictions faced by agents. Such allocation, called the efficient allocation, is unique and

stationary across trading cycles.2 Indeed, the planner would equate the marginal rates of

substitutions of the different types of agents, on each date. In what follows we thus focus

on stationary monetary outcomes. These are outcomes in which consumption is invariant

across trading cycles and the sequence of nominal prices evolves so that the money stock

has constant positive real value.

To simplify notation we omit t subscripts and use a prime to identify next-cycle vari-
2This is the same allocation that would arise if agents could coordinate and commit to a non-monetary

trading plan on each odd date, before realizing their individual shocks. See the Appendix.
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ables, when necessary. Accordingly, p1 and p2 denote the nominal price of goods on odd

and even dates (markets one and two) of an arbitrary trading cycle t. We also normalize

nominal variables by p2, so that trades in market one occur at real price p = p1

p2
. The

timing of events during cycle t for the arbitrary agent of type j is as follows. He enters

cycle t with real money holdings mj ≥ 0, saved in the preceding cycle. Subsequently, trade

occurs and after market one closes the agent enters market two on the even date with

mj,k real balances, where k = n, s, b denotes the idiosyncratic trading shock experienced

in market one (n if idle, b for buyer, s for producer).

Real money holdings evolve within the cycle according to

mj,b = mj − pcj

mj,s = mj + pyj

mj,n = mj

(1)

In market one, a buyer spends pcj and a producer earns pyj . Cash left over can be used in

market two, when the real price is one, qj is consumption bought and xj,k is production

sold by an agent who experienced shock k (the notation qj is without loss in generality,

see [9]). In market two, agents also save money to self-insure against consumption shocks.

Let m′
j ≥ 0 denote real balances held at the start of the next trading cycle.

In a stationary monetary economy real balances must be positive and constant, i.e.,

m′
j = mj > 0. If M is cash at the start of a cycle and M ′ = πM is cash available in

market two, then
p′2
p2

= M ′

M = π , (2)

i.e., the inflation rate equals the rate of growth of money. This rate is controlled by means

of per-capita lump-sum transfers τ in market two, so if all agents of type j hold the same

amount of money mj , then the government budget constraint can be written as

τ = [ρmH + (1− ρ)mL](π − 1). (3)

Stationarity and money market clearing imply that real balances available in market one

must equal the real money stock, denoted m̄, at each date, i.e.

M
p2

= m̄ = ρmH + (1− ρ)mL. (4)
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3.1 Trade on even dates

Given the recursive nature of the problem, we use a dynamic programming approach to

describe the problem faced by the representative agent of type j on any date. We let

Vj(mj) be the expected lifetime utility of this agent when he starts the trading cycle with

mj real balances before trading shocks are realized. We let Wj(mj,k) be the expected

lifetime utility from entering an even date with mj,k real balances.

The agent’s budget constraint at the start of an even date is:

xj,k = qj + πm′
j − (mj,k + τ) (5)

The resources available to the agent in market two partly depend on the realization of

the trading shock k, as he carries mj,k real balances from market one. Other resources are

xj,k receipts from current sales of goods and the lump-sum transfer τ .3 These resources

can be used to finance current consumption qj , or simply to save πm′
j real money balances.

Notice that short-selling is not allowed, and agents can save only with money and cannot

lend to each other. The factor π = p′2
p2

multiplies m′
j because the budget constraint lists

current real values. Indeed, the real rate of return on monetary savings is 1/π.

The agent’s problem at the start of an even date can be represented as follows:

Wj(mj,k) = max
qj ,m′

j≥0
{U(qj)− qj − πm′

j + mj,k + τ + βVj(m′
j)} (6)

It follows that in a stationary monetary economy

∂Wj(ωj,k)
∂mj,k

= 1 for j = H,L. (7)

The result hinges on the linearity of production disutility and the use of competitive

pricing, linear in the quantity sold. It follows that the marginal value of money reflects

the price of one unit of real balances, which is of course one. The economic implication is

the marginal valuation of real balances in market two neither hinge on the agent’s type

j, nor his (monetary) wealth, i.e., trading history.

So, we have

Wj(mj,k) = Wj(0) + mj,k, (8)

3Notice that xj,k ≥ 0 so we must verify that this is true for all k in equilibrium.
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i.e., the agent’s expected value from having portfolio mj,k at the start of an even date is

the expected value from having no wealth Wj(0), plus the current real value of mj,k real

balances. This implies agents’ savings choice m′
j is independent of trading histories as in

[20]. However, it is important to realize that, unlike [20], different agent types might save

different amounts because Wj(0) may differ.

To see this, note that everyone consumes identically in market two since (6) implies

qj = q∗ for j = H,L. (9)

The reason is agents in market two can produce any amount at constant marginal cost.

Goods market clearing on even dates requires

q∗ = (1− ρ)[αL(xL,s+xL,b)
2 + (1− αL)xL,n] + ρ[αH(xH,s+xH,b)

2 + (1− αH)xH,n]. (10)

Given (9) we write

Wj(mj,k) = U(q∗)− q∗ + mj,k + τ+ max
m′

j≥0
[−πm′

j + βVj(m′
j)]. (11)

The central implication is that the choice of savings hinges on the expected marginal

benefit of carrying real balances in market one. In turn, since market one trades depend

on the availability of money balances, then efficiency will depend on the agents’ choice of

savings m′
j . This is studied next.

Given that we are focusing on monetary outcomes, i.e., m′
j > 0, we must have:

1 =
β

π
×

∂Vj(m′
j)

∂m′
j

(12)

Recalling that one unit of real balances buys one unit of consumption, the left hand side of

the expression simply defines the marginal cost of real balances. The right hand side is the

expected marginal benefit from holding money discounted according to time preferences

and inflation. The expected benefit of holding money will generally differ across types j.

To see how, we must study trades on odd dates.
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3.2 Trade on odd dates

Consider an agent of type j with mj real balances at the start of market one. His expected

lifetime utility must satisfy

Vj(mj) = max αj

2 [u(cj) + Wj(mj,b)] + max αj

2 [−φj(yj) + Wj(mj,s)]

+(1− αj)Wj(mj,n),
(13)

where the maximization is over cj ≤ mj

p as a buyer and yj ≥ 0 as a producer.

The optimal choice yj of a producer must satisfy

−φ′j(yj) +
∂Wj(mj,s)

∂mj,s

∂mj,s

∂yj
= 0. (14)

Since ∂Wj(mj,s)
∂mj,s

= 1 from (7), and ∂mj,s

∂yj
= p from (1), then

p = φ′j(yj), for j = H,L. (15)

Hence, agents of different productivity produce different amounts.

Now consider a buyer. Recall from (1) that mj,b depends on cj . The first order

condition for the buyer’s problem, omitting the multiplier on the inequality constraint, is

u′(cj) + ∂Wj(mj,b)
∂mj,b

∂mj,b

∂cj
≥ 0.

Since ∂Wj(mj,b)
∂mj,b

= 1 from (7), ∂mj,b

∂cj
= −p from (1) and p = φ′j(yj) from (15), we get

u′(cj) ≥ p. (16)

If the constraint is not binding, then u′(cj) = p, solved uniquely by c(p) > 0, independent

of j, so any unconstrained buyer spends m∗ = pc(p). If the constraint is binding, then

u′(cj) > p. The buyer of type j consumes cj < c(p) and spends mj < m∗. Thus, cj will

never exceed c(p). That is,

cj = min{mj

p , c(p)}. (17)

Efficiency of the allocation depends on whether some agents are cash constrained. Indeed,

the planner’s allocation satisfies u′(cj) = φ′j(yj), which can be sustained only if cj = c(p),

since p = φ′j(yj).
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To find optimal savings of type j we use (1) and (8) in (13) to obtain

Vj(mj) = mj + αj

2 [u(cj)− φj(yj)] + αj

2 p(yj − cj) + Wj(0) (18)

where cj satisfies (17). The expected lifetime utility Vj(mj) depends on the agent’s real

wealth mj and two additional elements. First, the expected surplus from market one

trades. With probability αj/2 the agent is a buyer and spends pcj real balances to enjoy

utility u(cj). With probability αj/2 the agent is a producer, earns pyj real balances

but suffers disutility φj(yj), where p = φ′j(yj). Second, there is the continuation payoff

Wj(0). We emphasize that the third term on the RHS of (18) does not appear in the

representative-agent formulation in [20]. The change in wealth expected from market one

trades, p(yj− cj), is invariably zero in a representative agent model since y = c by market

clearing. Here, instead, agents may have unequal real balances or productivity. Hence,

some may produce amounts that differ from what they would consume. Indeed, goods

market clearing on odd dates implies

αHρyH + αL(1− ρ)yL = αHρcH + αL(1− ρ)cL. (19)

From (18) we can calculate the expected marginal value of money:

∂Vj(mj)
∂mj

= 1 + αj

2 [u′(cj)− p] ∂cj

∂mj
(20)

where ∂cj

∂mj
= 1

p if the agent is liquidity constrained (zero otherwise). It follows that Vj(mj)

is strictly concave in cash holdings if buyer j is liquidity constrained, and linear otherwise.

For a cash-constrained buyer mj < m∗ and the marginal value of money is

Vj(mj)
∂mj

= 1 +
αj

2

[
u′(cj)

p − 1
]
, (21)

which depends on the marginal utility of consumption and is decreasing in mj since u
′′

< 0.

If instead an agent is not cash constrained, the marginal value of money is constant and

equal to one, the real value of one unit of money.

We can now provide a definition of equilibrium.

Definition 1 Given an initial money stock M̄ > 0 and a government policy specified

by (π, τ), a competitive stationary monetary equilibrium is a time-invariant list of real
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quantities (cj , yj , q, xjk,mj) and cycle-dependent prices (p1,t, p2,t) that solve the agent’s

problems (6) and (13), satisfy (15), the government budget constraint (3), and market

clearing (4), (10), and (19).

Using the expressions (11) and (18) we define ex-ante welfare for a type j in stationary

equilibrium:

(1− β)Vj(mj) = αj

2 [u(cj)− φ(yj)] + αj

2 p(yj − cj) + U(q∗)− q∗

+(π − 1)(m̄−mj).
(22)

Here, cj , yj and mj are optimal consumption, production and money holdings, p = φ′j(yj)

and m̄ = ρmH + (1− ρ)mL, i.e., the real money supply equals average real balances. The

expression in (22) is standard, except for two terms that do not appear in the represen-

tative agent model in [20]. First, there is an expected change in wealth from market one

trades, αj

2 p(yj − cj). Low productivity agents might produce less than they consume, for

example. Second, there is a redistributive effect of inflation (π − 1)(m̄ − mj), i.e., the

(lump-sum) transfer minus the inflation tax on money holdings. This term is nonzero if

agents of different types hold unequal balances. Those with less than average balances m̄

end up with a net transfer, and the others with a net tax. That is, inflation redistributes

real balances from the top to the bottom of the distribution. Since money is usually the

only asset in this class of models, it follows that inflation can only redistributes wealth

from the “rich” to the “poor.” Indeed, a similar result emerges in the random matching

model in [11], which studies the redistributive impact of anticipated inflation in a model

with richer distributions of money balances, and in [5], that studies the redistributive

effect on unanticipated inflation.

3.3 Heterogeneity in trading shocks

In this section we let agents differ only in the probability of market-one trading, setting

0 < αL < αH ≤ 1 and φj(y) = φ(y) for j = H,L. Using (15) we have p = φ
′
(y), so

everyone produces the same amount y of output.

In a monetary economy mj > 0. Using (12) and (21) we have the Euler equation

π
β = 1 + αj

2

[
u′(cj)

p − 1
]

for j = H,L. (23)
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The equation is akin to an arbitrage condition. On the left hand side we have the (gross)

nominal interest rate on an illiquid bond (e.g., see [5, 9, 20]). On the right hand side we

have the nominal yield on money, one, plus its expected liquidity premium. It is positive

because u′(cj) ≥ φ
′
(y) from (17) and it arises because money is needed to trade in market

one. This premium grows with the severity of the cash constraint and the likelihood of

consumption shocks.

Letting i = π
β − 1 denote the net nominal interest rate and p = φ

′
(y), we write (23) as

i = αj

2

[
u′(cj)

φ
′
(y)

− 1
]

for j = H,L. (24)

We will use (24) extensively in our quantitative analysis. It defines two equations in two

unknowns, cH and cL, which can be uniquely determined as a function of the model’s

parameters and the interest rate i, which summarizes policy parameter in our model.

Policy affects the return of money the choice of monetary savings, and therefore con-

sumption in market one. The next result immediately follows.

Lemma 1 In any stationary equilibrium we must have π ≥ β, i.e., i ≥ 0. A unique

stationary monetary equilibrium exists for π > β and it is such that mL < mH < m∗,

hence cL < cH < c(p). As π → β we have mj → m∗ and cj → c(p) for all j.

Proof. By way of contradiction, suppose a monetary equilibrium exists with π < β.

From (23) we need π ≥ β + β(αj/2)[u′(cj)/φ
′
(y) − 1] ≥ β. This is in contradiction with

π < β. So, let π > β. From (23), an outcome with mj > 0 must satisfy

π = β
{

1 + αj

2

[
u′(cj)

φ
′
(y)

− 1
]}

for j = H,L.

As π → β then u′(cj) → φ
′
(y) for j = H,L. Therefore, mH → m∗ and mL → m∗.

By concavity of u, if π > β, then u′(cj) > φ
′
(y) for all j and so cL < cH < c(p) and

mL < mH < m∗. That is market one buyers are unconstrained only if i = 0. Existence

follows from inspection of the individual optimality and market clearing conditions.�

Lemma 1 has several implications. First, only one steady state equilibrium exists for

π > β. Intuitively, the rate of return on money 1
π cannot exceed the shadow interest rate

1
β . If that were the case, then agents would want to keep accumulating money, which
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is not a stationary monetary equilibrium. Second, the equilibrium distribution of money

has two mass points, with type H agents holding more money than type L. Intuitively,

type H agents are more likely to buy (as well as to sell) in market one, so they self-insure

more against consumption shocks by holding more money. However, notice that every

agent is liquidity constrained as long as i > 0, in which case the allocation is inefficient.

Third, as nominal interest rates approach zero, agents become indifferent between having

a dollar today or one tomorrow. In this case, trade-frequency considerations do not enter

saving decisions, hence all money holdings converge to the average value m∗. Clearly, this

allocation is efficient as it satisfies u′(cj) = φ
′
(y) for j = H,L.

3.4 Heterogeneity in productivity

In this section we assume agents differ only in market one productivity, i.e., we assume

φ′L(y) > φ′H(y) for each y ≥ 0, and fix αj = α ∈ (0, 1) for j = H,L. Clearly, p = φ′j(yj)

from (15), which implies yL < yH for all p > 0. Intuitively, agents are price takers so the

least productive will sell less goods.

In a monetary outcome mj > 0, and optimal savings must satisfy

π
β = 1 + α

2

[
u′(cj)

p − 1
]

for j = H,L, (25)

which is similar to (23). Since equation (25) has to hold for all j, we have cj = c for

j = H,L and therefore we have

i = α
2

[
u′(c)

φ′j(yj)
− 1

]
for j = H,L. (26)

Since cH = cL = c and yH > yL from (15), equation (5) implies that xHs < xLs, i.e.

type L agents must work more in market two than the more productive type H agents,

to make up for lower sales in market one. As before, π ≥ β in any stationary monetary

equilibrium. Therefore, we prove the following result.

Lemma 2 Consider π > β. A unique stationary monetary equilibrium exists and it is

such that mj = m < m∗ and cj = c < c(p) for all j. As π → β we have m → m∗ and

c → c(p).
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Proof. Consider (26). Clearly cH = cL = c for any i ≥ 0. Hence, mH = mL = m < m∗.

If i > 0 (i.e., π > β), then c < c(p), so m < m∗. As π → β then u′ (c) → p = φ′(yj),

implying that c → c(p) and m → m∗. Existence easily follows from inspection of the

individual optimality and market clearing conditions.�

The key difference from the earlier case of heterogeneous trading shocks, is that this

heterogeneous agent economy does not display equilibrium heterogeneity in money bal-

ances. This is because agents have identical preferences over consumption and face the

same consumption shocks. Therefore they identically optimally self-insure holding identi-

cal money balances. The main consequence is that consumption is identical for all agent

types. Once again, we find that for any i > 0 both agent types are liquidity constrained,

i.e. cj = c < c(p) for j = L,H. As i → 0 money holdings converge to m∗ and the alloca-

tion is efficient. Notice that this means some agents produce more than others, depending

on their productivity since u′(c) = φ
′
j(yj) for j = H,L.

4 Quantitative analysis of the benchmark model

In this section we calibrate the model and then proceed with the quantitative analysis.

We start by considering a representative agent economy in order to determine the value

of the preference parameters common across agents (the type-specific parameters will be

considered average values). Then, we quantify the welfare cost of inflation for a represen-

tative agent. This is helpful as a benchmark and comparison to related models. Once this

is done, we re-introduce heterogeneity and quantitatively study the redistributive impact

of inflation. Throughout the analysis for simplicity we report the welfare cost of x percent

inflation as a comparison to an economy with no inflation, unless otherwise specified.

Calibration of common parameters. In the representative agent model αj = α and

φj(y) = φ(y) for j = H,L. It is straightforward that in monetary equilibrium the relative

price p satisfies p = φ′(y) and pc = m, and c = y satisfies the agent’s Euler equation

i = α
2

[
u′(c)
φ′(y)

− 1
]
. (27)

We consider standard functional forms (e.g., see [4, 20]): u(c) = c1−a

1−a with a > 0 and
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φ(y) = yδ

δ with δ ≥ 1; U(q) = A ln(q), which implies q∗ = A. Now, using (27) and c = y

we find c as a function of the model’s parameters and the nominal interest rate i

c =
(

α
2i+α

) 1
δ+a−1

. (28)

We consider a yearly model mainly to facilitate comparison with [20, 22].

The vector of parameters to identify is

Θ = (α, β, a, A, δ).

We can easily assign numbers to two β and a. The annual rate of time preference is the

standard value 0.04 (e.g., see [20]), so we fix β = 0.96. The parameter a is set to 0.71,

following the recent empirical study on risk aversion in [24]. The remaining parameters

require some more thought.

To pin down δ, notice it corresponds exactly to the elasticity of disutility of labor with

respect to labor effort (derivation in the Appendix). The elasticity of labor supply with

respect to p (the real wage in our model) is 1
δ−1 . Therefore, we set δ to match average

elasticity of labor supply with respect to own wage in the U.S.. However, estimates of

the elasticity of labor supply vary according to the group considered (e.g., male versus

female). From [15], estimates of labor supply elasticities are 0.0 for men and 0.80 for

women. Consequently, we set δ to match the average of the two values with weights

given by the proportion of men (0.55) and women (0.45) in the labor force for the period

1960-2006 as reported by the Bureau of Labor Statistics. We get δ = 3.78.

The parameter α is set so that the theoretical interest elasticity of money demand,

denoted by εm, matches −0.226, which is the estimated interest elasticity of M1 reported

in [4]. In the Appendix we demonstrate that

εm = 2iφ′(y)
αcu′′(c) ,

so for the functional forms selected εm = − 2i
(2i+α)a . We measure i by the average nominal

annualized yield on U.S. short-term commercial paper, which amounts to 0.044 for the

period considered (1929-2006). Consequently, the calibrated value of α is 0.427. (Min-

imization of the distance between the data and the estimated elasticity yields similar

calibrated values for α).
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Last, we determine A to fit the real balances-income ratio L = M
PY , where P is the

nominal price level, M is M1, and Y is real output. As suggested in [20, 22], the value L

can be interpreted as money demand because real balances M/P are proportional to real

spending Y with a factor of proportionality L(i) that depends on the nominal interest

rate i. For the empirical counterpart of L, we consider U.S. data for the sample period

1929-2006. We measure P by the GDP deflator and Y by real GDP .4

To construct the theoretical expression for L in the model we proceed as follows.

Nominal output is α
2 p1c in the first market and p2q

∗ = p2A in the second market, so

aggregate nominal output is PY = p1
α
2 c + p2A. From (4), we know that in equilibrium

the nominal money stock is M = p2m, so normalizing by p2 we have L = m
α
2

pc+A . Given

the functional forms selected the L associated to our model is

L = 1
α/2+Ac−δ ,

with c defined in (28) (for a derivation, see the Appendix). We calibrate A in order

to minimize the distance between L in the data and in the model, given the calibrated

parameters (α, β, δ) = (0.427, 0.96, 3.78). This gives us A = 3.052.

In Figure 1 we show the quality of the fit of the model to the data, generated by the

calibrated parameters. For each year in the period 1929-2006, we plot the observed real

balances-income ratio M/PY against the nominal interest rate i. The continuous line

represents L = 1
α/2+Ac−δ given the calibrated parameters’ values.

The welfare cost of inflation for a representative agent. Now that we have the pa-

rameter vector Θ we can quantify the welfare cost of inflation with a procedure analogous

to the one in [20]. The welfare cost of inflation is defined as the percentage adjustment

in consumption the representative agent would require to be indifferent between a steady

state with inflation rate (money growth rate) π and a lower inflation rate x ∈ [β, π).
4For 1929-75, the nominal yield on short-term commercial paper is from [18, Table 4.8, Column 6]. For

1976-1996, it is from [13, Table B-69]. For 1997-2006, it is the Financial Commercial Paper with maturity

3-month, from [19]. The money supply M1 is in billions of dollars, December of each year, not seasonally

adjusted. For 1929-58, it is from [17, pp. 708-718, Column 7]. For 1959-2006, it is from the Federal Reserve

Bank of St. Louis FRED Database. For the period 1929-2006, nominal GDP is from [28].
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Let wπ denote expected (lifetime) utility for the representative agent in stationary

equilibrium given inflation rate π. Using (22) we have:

(1− β)wπ =
α

2
[u(cπ)− φ(cπ)] + U(q∗)− q∗. (29)

Here, cπ denotes equilibrium c given π. If we reduce π to x and adjust consumption in

both markets by the proportion ∆̄x, then we define adjusted expected utility by

(1− β)wx =
α

2
[u(∆̄xcx)− φ(cx)] + U(∆̄xq∗)− q∗. (30)

The welfare cost of having π instead of x inflation is the value ∆x = 1− ∆̄x that satisfies

wπ = wx. If ∆x > 0, then agents are indifferent between π inflation, or alternatively, x

inflation and consumption reduced by ∆x percent.

Using x = 1 to denote zero inflation and x = β to denote the Friedman rule, we

have that the welfare cost of inflation for the representative agent is rather small. For

example, ten percent inflation is worth less than 1% of consumption: ∆1 = 0.18% and

∆β = 0.21%. These results are in line with previous findings based on various models; e.g.,

see [4, 12, 16, 20, 21, 25].5 Now, we extend the quantitative analysis to the heterogenous-

agents case.

4.1 Heterogeneous trading shocks

Given inflation π, (22) and Lemma 1 imply equilibrium expected utility for type j

(1− β)wjπ = αj

2 [u(cjπ)− φ(yπ)] + U(q∗)− q∗

+αj

2 φ′(yπ)(yπ − cjπ) + (π − 1)(m̄π −mjπ).
(31)

Here, cjπ, yπ and mjπ are equilibrium quantities; average real balances equal the real

money supply so from (4), (15) and (17) we have

m̄π = ρmHπ + (1− ρ)mLπ = φ′(yπ)[ρcHπ + (1− ρ)cLπ].

The social cost of inflation is now unequally distributed across the population. Indeed,

as compared to the representative agent case in (29), the expression in (31) contains
5To compare our results to those in [20], we have also considered linear disutility from labor effort,

setting δ = 1 (recalibrating A, which becomes 2.88) and we obtained ∆1 = 0.83% and ∆β = 0.95%.
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additional terms that capture the distributional impact of inflation. To see why, note

that inflation affects an agent’s welfare in three ways. As usual, it distorts consumption

in market one and so it affects expected trade surplus on that market; this impact is

captured by αj

2 [u(cjπ)− φ(yπ)], which is type-dependent. Now, however, the distribution

of average net earnings in market one and the inflation tax burden also are affected by

inflation.

Inflation affects average earnings because expected income and expenditure are un-

equal in market one. Every type produces yπ, which corresponds to average output and

consumption (by market clearing). Type L agents, however, consume less than average, so

on average earn net income from market one trades. The opposite holds for type H. Given

that the value of goods is p = φ′(y), average net earnings are αj

2 φ′(yπ)(yπ − cjπ), which

varies with π (yπ and cjπ fall with π). In addition, inflation redistributes monetary wealth

due to equilibrium real-balance heterogeneity. Type L save less than the average m̄π but

receive the same lump-sum transfer (π− 1)m̄π as anyone else. Their reduced exposure to

the inflation tax results in a net transfer. The converse holds for type H. Consequently,

inflation can only redistribute monetary wealth from the “rich” to the “poor”.

If we eliminate inflation setting π = 1 and simultaneously adjust consumption by the

proportion ∆̄j1, then adjusted expected utility of an agent of type j is

(1− β)wj1 = αj

2 [u(∆̄j1cj1)− φ(y1)] + αj

2 φ′(y1)(y1 − cj1) + U(∆̄j1q
∗)− q∗. (32)

The welfare cost of π inflation for an agent of type j is the value ∆j1 = 1 − ∆̄j1 that

satisfies wjπ = wj1. Notice that without inflation, there is no wealth redistribution. At

the Friedman rule, instead, we have

(1− β)wjβ = αj

2 [u(∆̄jβcβ)− φ(yβ)] + U(∆̄jβq∗)− q∗. (33)

This is identical to the representative agent case because if π → β, then mj → m∗ = m̄

and cjβ → cβ = yβ for j = H,L (Lemma 1). Hence, not only there is wealth redistribution

but, since cjβ = cβ = yβ for all j, there is no disparity in average net income.

Calibration and results To measure the welfare cost of inflation we proceed as follows.

First, we fix the common preference parameters (β, a, A, δ) to the values calibrated in the
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representative agent model. Second, we fix the average trading friction to the value

α = 0.427 (also form the representative agent model) and then consider mean preserving

spreads ραH + (1− ρ)αL = 0.427 for some given value ρ. Several possibilities exist.

The route we take is to associate the types j = L,H to different segments of the U.S.

population, as follows. Recall that pcj + A is consumption expenditure (in real terms)

for an agent of type j = H,L. Thus, consider the ratio of consumption expenditures for

agent of type j to average consumption expenditure, i.e.,

pcj+A
p[cL+ρ(cH−cL)]+A

We let the ratio for type L be associated to average consumption for the bottom three

quintiles of consumption expenditure in the U.S., and the ratio for type H to the top two

quintiles. This implies ρ = 0.4. Then, we use data on consumption expenditure by income

quintiles from the Consumer Expenditure Survey for the period 1989-2006. We find that

for type L the above ratio is 0.644 and for type H it is 1.533. We calibrate αH and αL to

minimize the sum of the squared residuals between the theoretical and empirical ratios,

given that ραH + (1− ρ)αL = 0.427. In this manner, we obtain αH = 1 and αL = 0.045

(approximately).

The average welfare cost of 10 percent inflation inflation is approximately 0.19% and

it is distributed as follows, ∆L1 = −0.47% and ∆H1 = 1.18% (in the case of the Friedman

rule the average welfare cost is 0.36%, while ∆Lβ = −0.16% and ∆Hβ = 1.14%). In sum,

inflation does generate a welfare cost on average, but it is low and it has a very different

impact on different segments of the economy. Inflation has a beneficial welfare effect on

low-consumption (and low wealth) agents, while it hurts high-consumption (low wealth)

agents.

Is this result a construct of our way to calibrate αj? The answer is negative. To

demonstrate it, we ran the analysis fixing ρ to the arbitrary value 0.5 and quantify the

welfare cost of inflation as αL varies on (0, 0.427) to satisfy ραH+(1−ρ)αL = 0.427. Figure

2 reports the results, plotting the welfare costs ∆j1 (ten percent inflation as opposed to

no inflation) against αL. The main findings confirm the results obtained earlier:

• First, inflation lowers welfare of the average agent. Intuitively, inflation distorts
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consumption of everyone6 so it lowers average welfare. The average welfare cost,

however, is relatively small, being less than 1% and similar to the case of a repre-

sentative agent.

• Second, the burden of inflation is unequally distributed across types. Some inflation

can be welfare-increasing for agents who hold less-than-average balances (type L)

and welfare-decreasing those with more-than-average balances (type H). Intuitively,

inflation has a redistributive effect because balance holdings are heterogeneous, so

its burden is generally unequal across agent types. Nominal wealth is redistributed

top to bottom, i.e., from type H agents (who pay a large inflation tax) to type L

(low inflation tax). If the redistributive effect dominates the consumption distortion,

then welfare for that agent type rises.

• Third, the welfare cost for an agent type increases with the share of monetary wealth

held. Indeed, in the figure the welfare cost for agent j rises with αj (mj rises with

αj). This explains why, generally, the welfare cost is positive for type H agents,

negative for type L, and such a disparity shrinks as αL approaches the average

value of αj . This is clear in Figure 2. Intuitively, redistributive effects are strongest

under great wealth disparities. Given a fixed average value of αj , the lower is αL

the greater is the disparity in monetary wealth.7

6The Euler equation (24) can be rewritten as

F (cj , π) = 1 +
αj

2

�
u′(cj)

φ′(y)
− 1

�
− π

β
= 0 for j = H, L.

Since goods market clearing on odd dates implies

y =
αHρcH + αL(1− ρ)cL

αHρ + αL(1− ρ)
,

using the implicit function theorem for type L agents we have

∂cL
∂π

= − ∂F/∂π
∂F/∂(cL)

= − −1/β

αj
2

u′′(cL)φ′(y)−u′(cL)φ′′(y)
αL(1−ρ)

αH ρ+αL(1−ρ)

(φ′(y))2

< 0

since u′ > 0, u′′ < 0, φ′ > 0 and φ′′ > 0.
7Such a beneficial effect of inflation for those with low money holdings is similar to the finding in [23].

That result emerges in a model where agents can only self-insure at random, and so can be short on cash

simply because they did not have an opportunity to replenish their holdings. This is unlike our model,
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• Fourth, welfare costs are not necessarily higher for types H. The reason lies in

the average net earnings component αj

2 φ′(yπ)(yπ − cjπ), which is positive for L

but negative for H. The size of this term changes nonlinearly with π and it may

dominate the wealth redistribution effect. If agents are relatively similar (αL is close

to αH) then type L may suffer more than type H. To give an example we calculated

the welfare cost of 10 percent inflation as opposed to the Friedman rule. For low

values of αL the welfare cost is positive for H and negative for L. However, as αL

gets close to the average value 0.427 not only type L also suffer a cost, but it can

dominate that for type H. For instance, for αL = 0.4 we have ∆Lβ = 0.22% and

∆Hβ = 0.19%.

Discussion. The analysis above has generated two main results. The average welfare

cost of anticipated inflation is small; 10 percent inflation is worth less than one percent

consumption on average (for the different combinations of αj , the highest value is 0.31%),

which is not much different from the results of a representative agent model. Second, the

average welfare cost of anticipated inflation is unevenly distributed across the population;

the rich suffer more than the poor and the poor can even benefit from inflation. The first

result in line with previous studies and is quite robust to variations in most calibrated

parameters; a notable exception is of course A because this parameter determines the

relative size of market two (where money is unimportant). The second result is also

in line with other quantitative studies of the redistributive consequence of inflation in a

similar framework (see [11, 23]). In particular, a beneficial effect of inflation for those with

low money holdings is found in [23], a model where agents can only self-insure at random,

and so can be short on cash simply because they did not have an opportunity to replenish

their holdings. This is unlike our model, where self-insurance is not a problem (self-

insurance opportunities arise periodically, on even dates), but agents display differences

in the desire to self-insure.

Interesting, however, the redistribution result is at odds with at least some empirical

where self-insurance is not a problem (self-insurance opportunities arise periodically, on even dates), but

agents display differences in the desire to self-insure.
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evidence; for instance, richer agents are less concerned about inflation than the poor (see

the discussion in [2]). In addition, it is at odds with the findings in [14] that suggest

inflation redistributes wealth from the bottom to the top of the wealth distribution. That

is, inflation acts as a regressive tax in [14] and not as a progressive tax in our model.

A possible reason for such differences is the structure of financial portfolios in the two

models. In [14] agents can self-insure with cash as well as assets that are less liquid but

have a greater return. When the cost to liquidate these assets displays increasing returns

to scale, wealthier agents (more productive types, who consume more than average) hold

a smaller-than-average fraction of their wealth in cash. The opposite occurs for low-

productive types, who consume less than average hence hold a greater fraction of wealth

in cash. In our model, instead, agents can only hold cash. We will relax this assumption

and explore its implications in a later section (Section 5).

4.2 Heterogeneity in productivity

Now consider economies where agents have identical self-insurance needs but differ in

labor productivity as in Section 3.4. We calibrate the common preference parameters as

for the representative agent, (α, β, A, δ) = (0.427, 0.96, 3.05, 3.78). With regards to the

heterogeneous productivity parameters we proceed as follows.

It is assumed that different types of agents can exploit different linear production

technologies, one of which is more efficient than the other. Type L agents must supply

θ− 1 more hours than agents of type H to produce the same amount of output y. In this

case

φj(y) = (θjy)δ

δ

with θL = θ > θH = 1. We interpret θjyj as hours worked by type j to produce yj output.

It should be clear that with this formulation the elasticity of labor is δ, independent of

j, and φL(y) > φH(y) for all y > 0. Also, since choosing output or hours worked is

equivalent, our analysis is in terms of yj instead of hours. In the Appendix we show that
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c, yL and yH can be defined as explicit functions of the parameters:

yL =
[(

1 + 2i
α

) (
ρθ

δ
δ−1 + 1− ρ

)a
θδ

] 1
1−a−δ

yH = yLθ
δ

δ−1

c = yL

(
ρθ

δ
δ−1 + 1− ρ

)
.

Productivity is measured by average output per hour in nonfarm private industries

using date from the Bureau of Labor Statistics for 1987-2006. To calibrate the relative

productivity parameter θ we match the ratio of productivity in the service sector (very

productive) to the goods sector (less productive); we obtain θ = 4.24. Then, we set

ρ = 77% to match the proportion of employment in the service sector.

Using (22), the expected lifetime utility for type j under inflation π is

(1− β)wjπ = α
2 [u(cπ)− φj(yjπ)] + α

2 φ′j(yjπ)(yjπ − cπ) + U(q∗)− q∗. (34)

The expression differs from (31) because now agents with different productivity hold

identical balances (Lemma 2). So, inflation cannot redistribute wealth. However, there

are still disparities in average net eaernings because cjπ = cπ for j = H,L but yHπ > yLπ.

Hence, the social burden of inflation will be unequally distributed, in general.

If we reduce π to x and simultaneously adjust consumption (in both markets) by the

portion ∆̄jx, then the adjusted expected utility of an agent of type j is

(1− β)wjx = α
2 [u(∆̄jxcx)− φj(yjx)] + α

2 φ′j(yjx)(yjx − c1) + U(∆̄jxq∗)− q∗. (35)

The welfare cost of inflation for type j is thus ∆jx = 1− ∆̄jx.

The quantitative analysis generates the following results. The average welfare cost

is rather modest, 0.17 percent, but it is unequally distributed. Once again, the welfare

cost is higher for agents who are more productive, type H, and lower (or negative) for

types L. For example, we find that the cost of 10 percent inflation is ∆H1 = 0.47% and

∆L1 = −0.79%. This might seem surprising because there is no equilibrium dispersion

in monetary wealth. However, inflation affects agents identically, when it comes to con-

sumption distortions, but unequally when it comes to earnings. Intuitively, only the most

productive agents earn net income from market one trades, and this income falls with

inflation. So, the social burden of inflation lies mostly (or entirely) on their shoulders.
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5 Money is not the only asset

Money in this class of models is usually assumed to be the only asset. However, the

quantitative impact of inflation can obviously depend on whether alternative assets can

provide (some) consumption insurance. Thus, in this section we quantify the social cost

of inflation when heterogenous agents can hold more sophisticated financial portfolios.8

We augment the financial sophistication of the economy introducing a competitive fi-

nancial sector that offers risk-pooling services. On even dates agents have the opportunity

to buy consumption insurance as well as money because on market two an intermediary

sells one-period nominal assets to the public at price θ. Assets can (only) be redeemed in

market one for claims to money, which are enforceable in market two and financed with

the revenue from asset sales. The intermediary earns zero profits.

Market one buyers can redeem the asset spending its claims to buy consumption,

while sellers can redeem the asset to cash its claims in the next market. Idle agents

cannot participate in market one trades, so can trade neither on goods nor financial

markets, i.e., cannot redeem the asset. This feature is a form of limited participation in

financial markets (as well as goods), which affects agent types differently. Consequently,

the consumption insurance offered by the asset is less attractive to types L because they

are less frequent traders on market one.

For an agent of type j who holds bj ≥ 0 assets and mj ≥ 0 money the expressions in

(1) become:

mj,b = mj + bj − pcj

mj,s = mj + bj + pyj

mj,n = mj

(36)

The agent’s budget constraint at the start of an even date is:

xj,k = qj + πθb′j + πm′
j − (mj,k + τ) , (37)

hence

Vj(mj , bj) = mj + αjbj + αj

2 [u(cj)− φj(yj)] + αj

2 p(yj − cj) + Wj(0, 0). (38)

8Some related models in which money competes with another asset are [10, 26].
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Recall that an agent’s need for liquidity insurance depends on αj . The constraint for

a buyer with bj assets is pcj ≤ mj + bj , so cj = min{mj+bj

p , c(p)}. For a constrained buyer

we still need (23) for mj ≥ 0. Using (38) we have

∂Vj(mj ,bj)
∂bj

= αj + αj

2 [u′(cj)− p]∂cj

∂bj

where ∂cj

∂bj
= 1

p . Hence, we have bj ≥ 0 if

θ π
β ≥ αj + αj

2

[
u′(cj)

p − 1
]

for j = H,L. (39)

As in our previous analysis, consider outcomes in which all market-one buyers are

constrained. We wish to study an equilibrium in which those who consume less than

average hold more money but less other assets than average, as in the U.S. data. We

focus on the simplest possible scenario: bH > bL = 0 and mL > mH = 0. It is an

equilibrium if (23) is an equality and (39) a strict inequality for j = L (the converse must

hold for j = H).

We claim that this is an equilibrium for some sufficiently small inflation rate bounded

away from β. To demonstrate it observe that if only types H buy assets, then the repay-

ment constraint faced by the intermediary is

πθb = αHb, (40)

which pins down the price θ consistent with zero profits. Under the conjecture that only

types H buy πb assets at price θ, the asset’s (gross) average return αH
θ is simply the

inflation rate π. Indeed, αH is the portion of asset holders who redeem it.

In the conjectured equilibrium, if (39) is an equality then bH > 0, which using (40)

implies

αH( 1
β − 1) = αH

2

[
u′(cH)

p − 1
]
. (41)

Notice that αH( 1
β − 1) < π

β − 1 for all π > π̄ = β + αH(1 − β), with π̄ ∈ (β, 1) since

αH < 1. If (41) holds, then π
β − 1 > αH

2

[
u′(cH)

p − 1
]

for all π > π̄ (so mH = 0). As

π → β types H hold only money and u′(cH) = p (efficiency). Intuitively, if π ≤ π̄, then

inflation is small and assets offer consumption insurance that is ‘too expensive’ relative
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to the consumption insurance offered by money. Otherwise, type H prefers holding assets

but not money, since they can consume more.

Now consider a type L. If bL = 0, then (39) must hold as

θ π
β > αL + αL

2

[
u′(cL)

p − 1
]

,

which requires π < π̃ = β+αH−βαL, with π̃ > π̄ and π̃ > 1 if β > 1−αH
1−αL

. To see this, note

that αL
2

[
u′(cL)

p − 1
]
≤ π

β − 1 from (23). So bL = 0 whenever θ π
β > αL + π

β − 1. Using (40)

we get π < π̃. It follows that bL = 0 and mL > 0 with αL
2

[
u′(cL)

p − 1
]

= π
β −1. Intuitively,

if π < π̃, then assets offer consumption insurance that is ‘too expensive’ for type L agents.

These agents do not trade as frequently as type H, so the insurance offered by the asset

is not as valuable. Type L agents buy financial asset only if inflation is sufficiently high,

i.e., if money is a sufficiently poor store of value.

To sum up, if π ∈ (π̄, π̃), then H agents only hold financial assets, while L agents only

hold money. Hence, cH = b/p and mH = 0, while cL = mL/p and bL = 0 The expression

for cL is obtained from (23) as before. The expression for cH is obtained from (41).

Now we have

Wj(mj,k) = U(qj)− qj − πθb′j − πm′
j + mj,k + τ + βVj(b′j ,m

′
j) (42)

that differs from (6) due to asset holdings. Using the expressions (42) and (38), ex-ante

welfare for an agent of type j in stationary equilibrium is

(1− β)Vj(bj ,mj) = αj

2 [u(cj)− φ(yj)] + αj

2 p(yj − cj) + U(q∗)− q∗

+(π − 1)(m̄−mj) + bj(αj − πθ).
(43)

Here, cj , yj , and mj are optimal choices, bj = pcj − mj are optimal asset holdings,

p = φ′(yj) and m̄ = ρmH + (1 − ρ)mL from (4). The expression in (43) is standard,

except for the new term bj(αj − πθ) capturing the redistributive effect of inflation on

asset holdings.

Given mH = bL = 0 we have (1− ρ)mL = m̄ and b = pcH . For types L we have

(1− β)VL(0, m̄) = αL
2 [u(cL)− φ(yL)] + αL

2 p(yL − cL) + U(q∗)− q∗ − (π − 1) ρ
1−ρm̄.

Since m̄ = (1− ρ)mL = (1− ρ)pcL then (π − 1)m̄ ρ
1−ρ = (π − 1)ρpcL.

26



For a type H instead we have

(1− β)VH(b, 0) = αH
2 [u(cH)− φ(yH)] + αH

2 p(yH − cH) + U(q∗)− q∗ + (π − 1)m̄

because πθ = αH , mH = 0 and bH = b = pcH .

The inflation tax for type L is −(π − 1) ρ
1−ρm̄, and for a type H is (π − 1)m̄. Since

there is a proportion 1− ρ of type L and ρ of types H, these two terms sum up to zero.

That is, inflation generates a net wealth transfer from types L to types H. Assets holdings

of types H are not subject to the inflation tax because the expected return on assets is

αH
1
θ = π. Indeed, the price of nominal assets falls with inflation.

The quantitative analysis generates the following results. The average welfare cost is

once again rather modest, 0.32 percent, but it is unequally distributed. The direction

of the redistribution, however, is opposite to the one we find when money is the only

asset. For example, we find that the cost of 10 percent inflation is ∆H1 = −1.18% and

∆L1 = 1.32%. Therefore, in this case inflation benefits the rich - who hold financial assets

- and hurts the poor.

We think this result should hold as long as the model has the feature that some agents

choose to insure against consumption risk mostly (though not necessarily only) by using

money and not alternative assets. In our simple model this occurs because frictions in

asset market trading affect agents differently. Other formulations may include costs from

accessing liquidity services that display increasing returns (such as the model in [14]) or

agent specific preferences.

6 Final remarks

We quantify the welfare cost of inflation in a calibrated heterogeneous-agent model of the

U.S. economy. We provide three main contributions. First, the social cost of inflation is

small social cost, in that on average agents would give up less than one percent consump-

tion to avoid ten percent inflation. Second, the distribution across the population of the

social cost of inflation depends on the type of heterogeneity considered. If agents differ in

their labor productivity, then inflation does not redistribute monetary wealth, though it

hurts the more productive and benefits the less productive. This occurs because inflation
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affects agents identically when it comes to consumption distortions, but unequally when

it comes to earnings. Instead, if agents differ in trading shocks, then there is equilibrium

dispersion in monetary wealth and inflation has a redistributive effect. Third, the direc-

tion of wealth redistribution depends on whether money is the only asset in the model. If

it is, then inflation benefits the poor—who hold less-than-average balances—and hurts the

rich. The converse is true if agents can insure against consumption risk with a competing

asset.
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Appendix

A.1 The constrained-efficient allocation

Consider the allocation selected by a planner who maximizes the agents’ lifetime utili-

ties and treats agents identically. The planner is subject to the same physical and informa-

tional constraints faced by the agents and therefore cannot observe identities. However,

the planner observes types. Basically, the planner can propose a type-dependent consump-

tion plan in each trading cycle, but does not have the ability to transfer resources across

agents over time. Equivalently, the planner maximizes expected utility of the arbitrary

agent on each date. The planning problem thus corresponds to a sequence of static max-

imization problems, i.e., to maximize ex-ante welfare of the representative agent, subject

to technological feasibility.

Recall that on each date agents have identical preferences ex-ante and there is an

identical proportion of buyers and sellers. Moreover, on each odd date agents that are

active can produce or consume with equal probability.

Letting ρj = ρ for j = H and 1 − ρ for j = L, the planner problem is to choose

{cj , yj}j=H,L, q, and x to solve:

max
∑

j=H,L
αj

2 ρj [u(cj)− φj(yj)] + U(q)− x

s.t.
∑

j=H,L ρjcj ≤
∑

j=H,L ρjyj and q ≤ x

It is clear that, but non-satiation, the feasibility constraints should hold with equality.

Letting λ denote the Lagrange multiplier on the first feasibility constraint, the FOCs are

thus
αj

2 ρj [u′(cj)− λ] = 0
αj

2 ρj [−φ′j(yj) + λ] = 0

U ′(q)− 1 = 0

That is agents are assigned consumption and produce up to the point where the marginal

utility of their consumption or labor equal the marginal utility of income, λ.

Hence, the efficient allocation is stationary across trading cycles, and it can be char-

acterized as follows. On odd dates cj = c∗ = ρyH + (1 − ρ)yL and yL = y∗L < yH = y∗H

where the starred output values are the unique positive solutions to the two equalities
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u′(yL+yH) = φ′j(yj) for j = H,L. It should be clear that c∗ = y∗ such that u′(c∗) = φ′(c∗)

if there is no heterogeneity in productivity. On even dates qj = xj = q∗ for each type j in

each trading cycle, where q∗ is the unique positive solution to U ′(q) = 1.

A.2 Elasticities and the money demand ratio L

Consider a representative agent economy and focus on odd dates.

Elasticity of disutility of labor: The disutility of labor is φ(y) = yδ

δ , where in our

model y is production as well as labor effort of the agent. So, the elasticity of disutility

of labor is

εy =
dφ(y)/φ(y)

dy/y
=

d lnφ(y)
d ln y

=
yδ−1y

yδ
δ = δ,

since the differential

d lnφ(y) = d ln(yδ/δ) = d(δ ln y − ln δ) =
δ

y
dy.

Since φ′(y) = p, the labor supply y(p) satisfies

yδ−1 = p ⇒ y(p) = p
1

δ−1 .

Elasticity of labor supply: In our model the wage of a worker on odd dates is p. The

elasticity of the labor supply with respect to the relative wage is

εp =
dy(p)/y(p)

dp/p
=

d ln y(p)
d ln p

=
1

δ − 1
,

because the differential

d ln y(p) = d(ln p
1

δ−1 ) = d

(
1

δ − 1
ln p

)
=

1
δ − 1

× dp

p
.

Elasticity of money demand: From (17) we have pc = m, so the Euler equation (27)

for the representative agent is

F (m/p, i) = α
2

[
u′(m/p)

φ′(y)
− 1

]
− i = 0.
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Using the implicit function theorem we have

∂m/p
∂i = − ∂F/∂i

∂F/∂(m/p) = − −1
α

2φ′(y)
u′′(m/p) = 2φ′(y)

αu′′(m/p)

Given c = m/p and market clearing c = y, the elasticity of money demand is

εm = ∂m/p
∂i × i

m/p = 2φ′(y)
αu′′(c) ×

i
c = 2iφ′(y)

αcu′′(c)
(44)

We have φ′(y) = yδ−1 and y = c. So (44) is 2icδ−1

αcu′′(c) . Substituting c from (28) we get

εm = − 2i

a(2i + α)

The money demand ratio L: We have L = m
α
2

pc+A and from (17) we have pc = m. Also,

p = φ′(y). Since φ′(y) = yδ−1 and y = c from market clearing, we can write L = 1
α/2+Ac−δ ,

with c defined in (28) as a function of parameters and nominal interest rate.

A.3 Explicit solutions for consumption and output

Heterogeneity in trading risk: In this environment yH = yL = y. Given the assumed

functional forms we have φ′(y) = yδ−1 and u′(cj) = c−a
j so we can rewrite the Euler

equation (24) as

1 +
2i

αj
=

c−a
j

yδ−1
for j = H,L.

which implies that

cL =
(

(2i + αL) αH

αL(2i + αH)

)− 1
a

cH .

From market clearing (19) we have

y =
ραHcH + (1− ρ)αLcL

ραH + (1− ρ)αL
.

Substituting for y and cL in the Euler equation above we obtain

cH =

 αH

2i + αH

αHρ + αL(1− ρ)
(

(2i+αL)αH

αL(2i+αH)

)− 1
a

αHρ + αL(1− ρ)


1−δ

1
a+δ−1
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Heterogeneity in productivity: From Lemma (2) we have cH = cL = c. Given the

assumed functional forms we have φ′j(yj) = θδ
jy

δ−1
j and u′(c) = c−a so can rewrite the

Euler equation (26) as

1 +
2i

α
=

c−a

θδ
jy

δ−1
j

for j = H,L.

From market clearing (19) we have c = ρyH +(1−ρ)yL; from (15) we have p = φ′H(yH) =

φ′L(yL), which is

yH = yL

(
θL

θH

) δ
δ−1

= yLθ
δ

δ−1

since we have normalized θL = θ > θH = 1. So, market clearing implies:

c = yL

(
ρθ

δ
δ−1 + 1− ρ

)
.

Substituting for c in the Euler equation above we obtain

yL =
[(

1 + 2i
α

) (
ρθ

δ
δ−1 + 1− ρ

)a
θδ

] 1
1−a−δ

.

Money is not the only asset: In this environment yH = yL = y. The expression for

cL is obtained from (23), whereas the expression for cH is obtained from (41). Given the

assumed functional forms we have φ′(y) = yδ−1 and u′(cj) = c−a
j so we can rewrite the

Euler equation (23) as

1 +
2i

αL
=

c−a
L

yδ−1
,

and from (41) we have that

2−β
β = c−a

H

yδ−1

which implies that

cL =
(

αL + 2i

αL

β

2− β

)− 1
a

cH .

From market clearing (19) we have

y =
ραHcH + (1− ρ)αLcL

ραH + (1− ρ)αL
.

35



Substituting for y and cL in (41) we obtain

cH =

 β

2− β

αHρ + αL(1− ρ)
(

αL+2i
αL

β
2−β

)− 1
a

αHρ + αL(1− ρ)


1−δ

1
a+δ−1
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Appendix B

In this appendix we discuss the case in which agents are only ex-post heterogeneous. That

is, they receive idiosyncratic random type shocks in each odd date. The shock is such that

the type assignment is i.i.d. across agents and time, with ρ being the probability that the

arbitrary agent is assigned type H. So, by the law of large numbers the population of

traders is randomly partitioned into two types; a fraction ρ of traders is of type H, and

the complementary fraction 1− ρ is of type L, on each odd date. The model is otherwise

identical to the case in which agents’ types are fixed ex-ante. We will demonstrate that

in this case there is no heterogeneity in money balances.

Heterogeneity in trading shocks

Agents receive a type shock at the beginning of each odd date. Before knowing the

type shock he’ll receive, each agent has a probability ρ of being of type H and a probability

1 − ρ of being of type L. As in the case of fixed types, type H and type L agents have

respectively a probability αH and αL of meeting a counterpart, with 0 < αL < αH ≤ 1.

At the start of an even date, the agent’s problem can be represented as follows:

Wj(mj,k) = max
qj ,m′≥0

{U(qj)− qj − πm′ + mj,k + τ + βEV (m′)} (45)

and (7), (8) and (9) still hold. Note that at the end of the second market agents do not

know their type for the following cycle and therefore they all choose the same money

holdings m′ based on the expected continuation utility EV (m′):

EV (m) = ρVH(m) + (1− ρ)VL(m) (46)

Given that we are focusing on monetary outcomes, i.e. m′ > 0, we must have

1 = β
π ×

∂EV (m′)
∂m′ (47)

The intuition for (47) is analogous to the one for (12).
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After an agent realizes his type shock j, his expected lifetime utility of entering a

period with m must satisfy:

Vj(m) = maxcj∈[0, m
p

]
αj

2 [u(cj) + Wj(mj,b)]

+maxyj

αj

2 [−φj(yj) + Wj(mj,s)] + (1− αj)Wj(mj,n)
(48)

The seller’s problem is analogous to the case of fixed types and (15) still holds. Goods

market clearing for odd dates is identical to what seen earlier.

The buyer’s problem is similar to the case of fixed types, except for the fact that

money holdings m do not depend on the agent’s type, i.e. mj,b = m − pcj , so that (16)

and (17) still hold.

To find the optimal cash holdings of an agent j we must calculate the expected marginal

value of holding money, ∂EV (m)
∂m :

∂EV (m)
∂m = ρ∂EVH(m)

∂m + (1− ρ)∂EVL(m)
∂m (49)

where ∂Vj(m)
∂m satisfies (21) for j = H,L.

Now we can calculate the equilibrium marginal value of money. Specifically,

∂EV (m)
∂m = ρ[1 + αH

2 (u′(cH)− 1)∂cH
∂m ] + (1− ρ)[1 + αL

2 (u′(cL)− 1)∂cL
∂m ]

where ∂cj

∂m = 1 for j = H,L if the agent is liquidity constrained, and zero otherwise. It

follows that EV (m) is strictly concave in cash holdings if at least a buyer is liquidity

constrained, and linear otherwise. So, if m ∈ (0,m∗] then the agent’s optimal savings

choice must satisfy

1 = β
π

{
ρ[1 + αH

2 (u′(cH)− 1)] + (1− ρ)[1 + αL
2 (u′(cL)− 1)]

}
(50)

the intuition for which is analogous to the one for (23).

Goods market clearing on even dates is identical to (10). Given that all agents have

identical money holdings, (4) becomes

M

p2
= m. (51)

The definition of equilibrium is analogous to the layout of Definition 1 with the obvious

modification. That is, we must account for equations (45), (46), (48), and (51).
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In a stationary monetary equilibrium we must have π ≥ β. Therefore, we prove the

following result.

Lemma 3 If π > β, then cL < c∗ and cH < c∗. If π → β, then cL → c∗ and cH → c∗.

Proof. From (50) we know that if m > 0 then π−β
β = αH

2 ρ(u′ (cH)−1)+ αL
2 (1−ρ)(u′ (cL)−

1). Note that π ≥ β is necessary. If π > β, then αH
2 ρ(u′ (cH)−1)+ αL

2 (1−ρ)(u′ (cL)−1) >

0. Since mH = mL = m, then u′ (cH) > 1 and u′ (cL) > 1. This implies cH < c∗ and

cL < c∗.

As π → β then u′ (cH) → 1 and u′ (cL) → 1. Therefore, m → m∗, cH → c∗ and

cL → c∗ and neither type of agent is cash constrained. Thus, the Friedman rule can

achieve the efficient allocation. Existence easily follows from inspection of the individual

optimality and market clearing conditions.�

Lemma 3 has several implications. First, away from the Friedman rule all agents are

cash-constrained. Remember that in this environment all agents carry the same money

holdings m since they don’t know their type for the following periods. Second, as π → β

money holdings m converge to m∗ and therefore neither type L nor type H agents are

cash constrained, i.e. cH → c∗ and cL → c∗.

Heterogeneity in disutility from production

Agents receive a type shock at the beginning of each odd date. Before knowing the

type shock he’ll receive, each agent has a probability ρ of being of type H and a probability

1− ρ of being of type L. As in the case of fixed types, production of y output generates

disutility φj(y) with j ∈ {L,H} and φ′L(y) > φ′H(y). As heterogeneity in this economy

only affects marginal production disutility, money holdings choices will not be affected

by the uncertainty faced by agents. That is, all agents still hold the same m at the

beginning of every period as in the case of fixed types. Therefore, Lemma 2 still holds in

this environment, i.e., allocations are inefficient away from the Friedman rule and efficient

when the Friedman rule is implemented.
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US money demand with fitted model (1929-2006)
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Figure 1: Quality of fit
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Figure 2: Welfare cost (zero inflation), heterogeneity in trading shocks
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