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ABSTRACT 

Radar alone gives noisy estimates of a target’s location and is incapable of directly 
measuring velocity.  To rectify these shortcomings, we researched linear estimators, a class of 
algorithms that more accurately estimate position and velocity.  We chose the Kalman filter 
because of its simplicity, efficiency, and low memory requirements.  We developed a Visual 
Basic .NET console application that returned the target’s positions and velocities.  The program 
typically provided position estimates within a radius of half a mile of the true positions and 
returned velocity estimates within a range of three miles per hour. 

INTRODUCTION 

Process 

When most people think of radar, they think of its depiction in movies as a foolproof way 
of immediately finding a target’s exact location.  However, it is actually much more complex 
than simply bouncing a wave off a target and measuring its return.  Due to various types of 
“noise”, or errors, equations and algorithms must be created to make the raw measurements from 
the radar system give a more accurate estimate of the target’s position. 

Our project involved creating and implementing an algorithm known as the Kalman filter.  
We used the filter in five different scenarios involving either a single or dual radar system that 
measured the target’s position.  We used the filter to help refine the measurements and bring 
them closer to the target’s actual position by accounting for both driving noise, the variation in 
the flight path of the target; and measurement noise, the accuracy of the radar itself.  The 
scenarios increased in difficulty each time, moving from simple one-dimensional range 
coordinates to Cartesian coordinates and then to polar coordinates.  Polar coordinates include 
range and bearing from a set normal line pointing north and are closer to what a true radar 
system would measure. 

After filtering the measurements and obtaining our calculated data, we analyzed it on a 
comparative basis with the true position and velocity values that were given to us.  To check the 
accuracy of the filter, we used a residual graph—a graph that shows the differences between 
actual and predicted points at each point in time.  When doing this, we looked to see that the 
filter’s predicted values increased in accuracy as time progressed, that the filter did not contain a 
bias in any one direction, and that the filtered data were consistently more accurate than the raw 
measured values. 

Background
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Rudolf Kalman, an electrical engineer by training, is most famous for his co-invention of 
the filter that now bears his name, the Kalman filter.  The Kalman filter is a digital mathematical 
signal processing technique which uses recursion to estimate the state of a dynamic system from 
a series of incomplete and noisy measurements.  The roots of this equation can be traced back to 
Carl Friedrich Gauss’s 1795 work. 

Kalman was born in Budapest, Hungary, on May 19, 1930.  He obtained his bachelor’s 
and master’s degrees from MIT in 1953 and 1954, respectively, and his doctorate from Columbia 
in 1957 [1].  Kalman’s ideas for the filter were first met with so much resistance that he had to 
publish the results in a mechanical journal rather than an electrical one.  However, after Kalman 
visited Stanley Schmidt at the NASA Ames Research Center in 1967, his filter was used in 
trajectory estimation for the Apollo program’s navigation system [2]. 

Since then, the Kalman filter has gained a wide variety of uses in a diverse range of fields.  
Some of the areas in which it is used include nuclear power plant instrumentation, demographic 
modeling, manufacturing, detection of underground radioactivity, fuzzy logic (a branch of logic 
in which truth is not absolute), neural network training, and econometrics [3].  The number of 
applications has increased rapidly in recent years with the advent of new computer technologies, 
and it has now entered into the development of sophisticated weapon delivery systems, satellite 
surveillance systems, and non-military tracking systems such as Air Traffic Control [4].  It is 
also being used today in three-dimensional environment technologies to track the movement of 
targets.  

Scenario Overviews 

• Case 1: One Dimensional Tracking 
• Case 2: Two Dimensional Tracking 
• Case 3: Polar Coordinate Tracking 
• Case 4: Dual Radar Tracking 
• Case 5: Maneuvering Target Tracking 

We were given five different cases in which to use the Kalman filter.  Each had an 
increasing level of difficulty and complexity.  In the first case, we had to track a target moving 
only in one dimension.  For the second case, the target was moving in two dimensions, and the 
measured data was given to us in Cartesian coordinates.  In the third case, we were again told to 
track a target moving in two dimensions, but the measured data was given to us in polar 
coordinates, which corresponds more closely to the data given by real radars.  The fourth case 
introduced the problem of having multiple radars tracking a single target.  In the final case, we 
had to track a maneuvering target that switched velocity twice during its course. 

KALMAN FILTER EQUATIONS 

True Position and Radar Input 

The true position of the object at time 1+k , given the position at time  is: k

 ( ) ( ) ( )kkk qxx +Φ=+1  (1) 
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The state vector is: ( )kx

 
( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n

n

v

v
s

s

k

M

M

1

1

x

 

and the state transition model Φ  is: 
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nI  represents the  identity matrix. nn×

The state vector keeps track of the target’s positions and velocities in different 
dimensions (usually the x and y dimensions).  The purpose of the Kalman filter is to estimate the 
true state vector given a series of discrete radar measurements. 

The state transition model updates the state vector each timestep.  The state transition 
model updates each position by adding the time interval between each radar measurement 
multiplied by the velocity in the same dimension. 

Because of mechanical and pilot error, however, it is impossible for a flying object to 
maintain a constant velocity.  This is called driving noise and is represented by q(k).  It is added 
to the state vector of each timestep to account for such driving irregularities.  Mathematically, 
this noise, while zero on average, is a random Gaussian noise process with known covariance 
matrix: 
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In general, the covariance of a vector of random variables is defined as: 

 ( ) ( )( ) ( )( )( )TXXXXX EEE −−≡cov . (2) 

Driving noise between positions and velocities is uncorrelated, which explains the zeros 
in the bottom left and top right quadrants of . Q
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Because radar can only measure position and not velocity, the state vector must be 
converted into a measurement vector by the following equation.  The measurement vector is a 
function of the state vector plus a random noise process: 

 ( ) ( ) ( )kkk rHxy += ,  (3) 
 
where the measurement vector  is: 

 ,  
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and the observation model H  is: 

 [ ]0nIH = . 

In order to convert the state vector into a measurement vector, all the velocities must be 
eliminated since they cannot be measured.  This is accomplished by multiplication with the 
observation model, which removes every velocity by effectively cutting the state vector in half. 

Just as driving noise was added to the state vector, measurement noise must be added to 
the measurement vector.  Intuitively, this noise represents the inability of the radar tracking 
device to precisely measure the object’s position.  This could be due to several technical 
problems, from limitations in the radar screen’s resolution to vibrations in the equipment.  
Mathematically, measurement noise represents the standard deviation σ between the positions 
that should be measured and the positions that are actually measured.  Therefore,  is a 
Gaussian random process that follows a multivariate normal distribution with covariance matrix: 
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Prediction 

The first phase of each iteration of the Kalman filter is the prediction stage, in which the 
algorithm gives both predictions of the object’s state vector and an estimate of how reliable the 
prediction is. 

Predictions of the object’s state vector are given using the following equation: 

 ( ) ( )kkkk |ˆ1|ˆ xx Φ=− , (4) 

which is simply the prediction analog of Eq. (1).  (The notation ( )nm |x̂  means the prediction of 
vector x  at time  made at time .)  The Kalman filter must estimate both position and 
velocity even though radar can only track position. 

m n
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By Eq. (2), the estimate of the predicted state vector’s reliability is given by 
( )( )( )TxxxxP ˆˆ −−≡ E , which is the covariance of the difference between predicted and actual 

states.  This difference should be zero on average, but  itself will never be less than .  
Covariance is a measure of the degree to which numbers vary.  In other words, applied to the 
state covariance matrix, covariance measures how spread out the errors are.  Expanding this 
definition of the state covariance matrix gives: 
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where xx ˆ−≡ε .  The terms along diagonals in the upper left and bottom right quadrants denote 
the variances of errors in positions  and velocities .  These numbers have a 
practical application in that they give the formula of an ellipse in which the errors have a certain 
probability of lying.  In two dimensions, the equation of an ellipse that has not been rotated is: 
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Rotating the coordinate plane by angle θ  gives the transformation: 
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and substituting this into Equation (5) gives: 
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The distance between a measured position ( )yx ss ,  and the predicted position ( )yx ss ˆ,ˆ , 
measured in units of standard deviation squared, is given by: 

( ) sHPHs TT=2σn , 
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However, this is the equation of an ellipse, so: 
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covariance matrix 

If 1=σn .  Solving for , b , and a θ  gives: 
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When ( ) ( )yx ss varvar = , the angle of rotation is irrelevant because the ellipse reduces to a 
circle.  A graph of the ellipse shows this 
information (Fig. 1). 

 

The distance given by Eq. (7) is used in 
determining whether an object has maneuvered, or 
changed course while the Kalman filter is running.  
A certain tolerance level (usually 2σ or 3σ) is built 
into an implementation of the filter.  If the distance 

between the measured and predicted 
positions exceeds the tolerance level during a 
set number of concurrent timesteps, the 
Kalman filter must be reinitialized using the 
last two measurements.  Fig. 2 shows a graph of
predictions superimposed on the object’s course
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 a maneuvering object with error ellipses and 
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Estimating initial values for the state covariance matrix is one of the most difficult parts 
of running the Kalman filter algorithm.  Reasonable values are chosen for each element in the 
initial state covariance matrix  based on what is known about the system.  They are 
updated by the following equation: 

( 0|0P )

 ( ) ( ) QPP T +ΦΦ=+ kkkk ||1  (8) 

The matrix will give a better prediction of error as the algorithm goes through more 
iterations. 

Update 

As the update stage begins, time  becomesk 1+k .  The measurement residual , the 
difference between the actual measured positions and the predicted positions, is given by: 

( )ks

 ( ) ( ) ( )1|ˆ −−= kkkk xHys , (9) 

and the covariance of ( )ks  is: 

 ( )( ) ( ) RHHPsS T +−== 1|cov kkk . (10) 

The residual covariance matrix is similar to the state covariance matrix, except that it 
only accounts for positions and it measures covariance between predicted and measured states 
rather than between predicted and actual states.  When updating state vector estimates, the 
Kalman filter includes a weighting factor known as the Kalman gain matrix, given by: 

 ( ) ( ) 11| −−= SHPK Tkkk . (11) 

The state vector estimate is then updated by the equation: 

 ( ) ( ) ( ) ( )kkkkkk sKxx +−= 1|ˆ|ˆ . (12) 

Combining Eq. (11) and Eq. (12) shows intuitively that the greater the covariance matrix 
 is, the less the Kalman gain matrix is.  Accordingly, the difference S ( )ks  between measured 

and predicted states is weighted less when added to the new state vector prediction because there 
is a much higher possibility of error, especially from measurement noise.  The state covariance 
matrix is updated by: 

 ( ) ( )( ) ( )1|| −−= kkkkk PHKIP . (13) 
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Polar Transformations 

Although the two dimensional Kalman filter requires measurements to be in Cartesian 
coordinates, radar systems measure objects’ positions using polar coordinates.  To accommodate 

this problem, the measurement vector  must be converted using the transformation: ( ) ⎥
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Because the matricesΦ , H , , and  do not involve transformations from polar to 
Cartesian coordinates, they do not change from the forms listed above.  However, because 
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measures the covariance of measurement error, which is given in polar coordinates, a new R  is 
required.  Measurement noise in x and y positions can be estimated by taking differentials of the 
above transformation: 
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DEVELOPMENT OF THE PROGRAM 

Program Background 

The purpose of the program was to provide a general implementation of the Kalman filter.  
Initially, the program was very simple and only worked with Case 1.  It was entirely linear and 
had no flexibility.  The second version of our program was simply a copy of the first that was 
modified to work with Case 2.  This program, too, was very hard to modify.  We rewrote the 
third version of the program from scratch, in an attempt to deal with the modifications issues.  
The code that ran the filter was separated from the code that was involved in the initialization 
and put into its own function.  Although this made it easier to modify the code for Case 3, most 
of the code was unable to be easily reused.  It was at this point that we switched to object 
oriented programming style. 
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Breaking up the Program

Instead of having large chunks of un-reusable code, we broke down each task into a set of 
related functions and data, called classes.  All of these code segments were easily reused, 
modified, and extended.  The code became very modular, and we discovered that we could get 
all of the cases into the same program with little extra effort.  The time needed to add additional 
cases also dropped. 

The program was divided up into a number of classes.  The main parts were the control 
loop; the KFilter class, which handled the filter operations; the Startup module, which handled 
initialization; the DataIterator, which reads the file and stores the data; and MatLib and other 
utility functions. 

Structures and Classes 

The most basic structure used in the program, called a “Datum,” stores a position vector 
and the time.  It is passed around between most of the classes in the program. 

DataIterator is an interface that provides two basic methods for accessing data from an 
arbitrary input source.  These two methods are hasNext() and nextDatum().  hasNext() indicates 
if there is still more data.  nextDatum() gives the new piece of information to the calling function 
if new data exists.  This information is stored in a Datum structure. 

DataIterator has several implementing classes that perform various operations on the data 
before they are passed to the filter.  The most basic of these classes is the FileReader.  It simply 
reads the data in Cartesian coordinates (which can contain any number of dimensions) and places 
them into the vector, along with the time. 

The PolarFileReader class extends the capabilities of the FileReader class.  It reads polar 
coordinates from the input source and converts them into Cartesian so that the filter can work 
with them.  Unlike the FileReader, it can only accept two dimensions. 

The last implementation of DataIterator is the PolarMultiReader.  It extends the 
capabilities of the PolarFileReader class by supporting input data from an arbitrary number of 
radars.  The class is initialized with the coordinates of each radar, and data is converted to 
rectangular coordinates based on the coordinates of the current radar. 

The KFilter class performs the filter’s main calculations by carrying out the filter 
operations.  These operations can be broken up into two phases: predict and update.  After being 
initialized with the error covariance and state matrices, the filter’s predict method can be called 
(which carries out the predict stage of the filter).  Time is passed as an argument, and the filter 
predicts the next state of the target based on the time interval.  All data is stored within the object 
instantiation.  Once the predict stage is finished, the update stage commences.  This involved 
calling the update method of the KFilter instantiation and passing in the measurement vector 
(which is returned by a DataIterator).  The update method carries out the update stage of the filter.  
The KFilter class also contains an accessor method called getX().  This allows the current state 
of the filter to be obtained.  Lastly, there is a reset() method that is used when the state and state 
covariance matrices need to be reset. 
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The CommaWriter class stores the results of the filter into a comma delimited text file.  
This format was chosen because it is easily opened in Microsoft Excel™.  CommaWriter is 
initialized with the name of the output file and the number of dimensions.  During initialization, 
it writes the appropriate headers to the file.  CommaWriter also contains the writeLine() method 
which takes a time and vector as arguments, and writes them to the output file.  When the output 
is finished, the close() method is called, which closes the file. 

Additional Functions 

The main sub combines the functions of all of these classes into a coherent program.  It 
begins by asking the user which case to run.  At this point, it performs case-specific initialization 
of the error covariance matrices and other variables.  It also sets the correct input and output files, 
and instantiates the correct implementation of DataIterator.  It then begins the main loop, which 
reads a Datum from the DataIterator, calls predict() with the time from the Datum, updates the 
filter with the measurement vector, and writes the output through the CommaWriter.  When no 
more data is present, the program exits. 

The initialize method generates the initial state vector.  It is given the first two sets of 
coordinates from the DataIterator, and it returns a vector with the last position and the average 
velocity. 

Also heavily used in the program is the MatLib [5] library.  This library contains 
functions that can perform basic matrix arithmetic.  The only difficulty is that equations need to 
be converted into prefix notation (as opposed to infix notation) to work with the matrix library.  
In general, this involves looking at the equations and recursively going through the order of 
operations backwards.  All of the functions are used heavily in the KFilter and initialization 
functions.  

In addition, a number of functions that generate matrices that are dimension dependent 
were written so that we would not need to hard-code the values in for each case. 

Finally, one of the cases requires a function to determine how many standard deviations 
from the prediction the measurement is.  This is done with the nSig() function.  Given the x 
(prediction), y (measurement), and p (error covariance) matrices, it calculates (nσ)2. 

Each case requires certain assumptions to run properly.  For all of the cases, we were 
given the error of the radar and the assumed driving noise.  These values were hard-coded into 
the program.  Each case also required certain adjustments that allowed it to understand the 
properties of the data read from the file.  Therefore, for each case, we hard-coded the specific 
properties that were necessary. 

Putting the Program Together 

To implement the Kalman filter, we needed a way to initialize most of the matrices.  
Based on some guesswork, we were able to hard code most of the values into the program.  Once 
the covariance matrices were initialized, we were still left with the problem of obtaining the 
initial state.  The initialize() function does this by looking at the first two data points that the 
program receives, and uses them to make linear estimates of the position and velocity.  This 
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initial state served as a platform on which to base future state estimates.  One last problem that 
we ran into was that the time intervals between data points were not constant, although they were 
very close.  This mattered when we were calculating the value of Φ.  To find the change in 
position, we needed to know the change in time.  To compensate for this, we created a function 
that returned the phi matrix based on the current time interval.  Once this was completed, we 
then moved on to running the actual algorithm.  For each data point read from the file, we 
predicted what the state at the next time interval would be.  After this, we recalculated the state 
covariance and moved on to reading the next actual data point from the file.  Once we had the 
data point, we updated the Kalman gain matrix, the state estimate, and the state covariance.  The 
state estimate, along with the time, was printed to file.  The program was then ready to repeat the 
process of reading the time interval, predicting, and correcting. 

SCENARIOS 

Case 1 

Description: 

Case 1 was the simplest of the problems we were given.  It assumed that the target was a 
plane that was flying directly over the radar in one dimension.  The plane’s measured distance 
from the radar was given to us at each timestep. 

Programming Changes: 

Case 1 was very basic.  Therefore, we only had to set the number of dimensions to one 
and make sure that the DataIterator was a FileReader. 

Results: 

Figure 3 shows two residual (difference) graphs.  One shows the residuals between the 
measured positions and the actual positions at each timestep, and the other shows the residual 
between the predicted positions and the actual positions of the target at each timestep.  The 
positions that were predicted by the Kalman filter were much closer to the actual points at almost 
every point.  The radar-measured points had an average percent error of 14.4%, while the filter-
predicted points had an average percent error of 2.32%.  In addition, the graph shows how the 
performance of the Kalman filter improves over time: the predicted points get closer to the actual 
points, and fewer predictions are very far off.  This shows the advantage of using the Kalman 
gain matrix in the algorithm, which decreases the influence of new measurements as the 
algorithm gains confidence and our estimates become closer to the actual data. 

Figure 4 again shows how the performance of the Kalman filter improves over time.  
While the predicted velocity originally differed from the actual velocity by over 100 mph, it 
quickly corrected itself to get closer to the real value.  By the end of the measurement time the 
predicted velocity was very close to the actual velocity, which is shown by the line approaching 
the x axis.  Though the initial predictions were off, the filter adapted and corrected the mistakes 
after it read some more accurate points. 

Case 2 
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Description: 

Case 2 involved a plane moving in two dimensions that passed by the radar.  It was 
moving in a straight path at constant velocity. 

Programming Changes: 

Case 2 was identical to Case 1 except that the number of dimensions was set to 2. 

Results: 

In Figure 5, the range (distance from the radar) and measured residuals are compared.  
Because of noise, the radar measurements were quite distorted.  However, the predicted residuals 
were closer to the actual position.  The filter had an error of 0.99% in the x direction and 12.13% 
in the y direction, while the radar alone had an error of 3.22% in the x direction and 12.91% in 
the y direction.  The filter is still quite powerful in two dimensions. 

Figure 6 shows the residual between the predicted velocity and the actual velocity.  In the 
beginning, given only a few points, the filter once again showed a relatively high error.  
However, once more points came in and time progressed, it becomes evident that the filter 
becomes more and more accurate in its predictions.  This once again shows the advantage of the 
Kalman filter over time, even when analyzing data in two dimensions. 

Case 3 

Description: 

Case 3 involved a target moving in two dimensions that was tracked by a single radar.  
Coordinates from the radar were in polar form.  The range represented the target’s distance from 
the radar, and the angle represented the target’s compass heading. 

Programming Changes: 

The number of dimensions remained at 2.  A PolarFileReader was used in place of a 
FileReader.  The R matrix had to be updated at each timestep between the predict() and update() 
methods according to the conversion of covariance matrices from polar to Cartesian.  This 
accounted for the changing measurement covariance matrix. 

Results: 

Figure 7 shows how the Kalman filter helps to improve the measurements and bring them 
closer to the actual values.  The performance, again improved over time.  The starting conditions 
for this case were less than ideal, as shown by the first few predicted points, but by the end of the 
target’s course, the predicted range was much closer to the actual range than was the measured 
range.  The measured range had an average percent error of 6.36%, while the predicted range had 
an average percent error of 4.51%. 
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The velocity residual for Case 3 is shown in Figure 8.  As with previous velocity residual 
graphs, the initial velocity residual was very far from 0.  This was due to low velocity predictions 
for the initial condition.  However, the radar was able to adjust to the conditions to give fairly 
accurate predictions of the velocities by the final time steps.  The “predict and update” algorithm 
of the Kalman filter works well when using polar coordinates that are native to radar systems. 

Case 4 

Description: 

In case 4, two radar stations monitored the target, with only one recording data at any 
given point in time.  The measurements were given as polar coordinates relative to the active 
radar. 

Programming Changes: 

Case 4 was identical to Case 3 except that it used a PolarMultiReader instead of a 
PolarFileReader. 

Results: 

The noise associated with two radars did not throw the filter off.  The predicted positions 
remained much better than the measured positions (see Figure 9).  After the first few points, the 
filter became fairly accurate.  It is noteworthy that between 6 and 6.5 minutes, when the radars 
switched, the filter was only off by 0.5 miles. 

As in the previous 3 cases, the initial velocity estimates were very inaccurate.  Simply 
averaging the first two points did not provide an accurate prediction.  As the time moved on, 
however, the filter adapted and corrected the error (see Figure 10). 

Case 5 

Description: 

In Case 5, we were attempting to track a UFO that was maneuvering to elude our radar.  
The UFO changed velocity twice.  Coordinates were given in polar form. 

Programming Changes: 

Case 5 was very similar to Case 3, except we needed a way to let the filter know when 
the target maneuvered.  In order for the filter to recognize the changes in velocity, it had to check 
the accuracy of its model at each timestep.  To do so, it checked how many standard deviations 
the measurement was from the prediction based on the error covariance matrices.  This was done 
in the nSig() function.  If the measurement was at least four standard deviations from the 
prediction for three concurrent timesteps, the filter was reset by calling the filter’s reset() method.  
This reinitialized the state covariance matrix, P, and reset the state to the previous measurement. 
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Results: 

Figure 11 shows that the predicted positions were slightly worse after each turn, because 
the filter believed that the object was moving in a straight path.  However, once the error was too 
big, the filter reset and was able to make more accurate predictions. 

The velocity graph (Figure 12) still follows the trend of fairly inaccurate initial 
predictions.  The predicted velocity approached the true velocity until the object turned, causing 
a large error velocity residual.  The filter reset with another fairly inaccurate prediction but once 
again approached the true velocity.  The final turn caused the same problems but at a smaller 
scale. 
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CONCLUSION 

The Kalman filter uses linear algebra to predict the position and velocity of a target.  
Based on the predictions and the radar measurements, the filter is able to correct errors.  The 
filter’s internal correction methods can be used to adapt the filter to figure out when a target is 
maneuvering by resetting the parameters and beginning the predictions from a new point, as was 
seen in Case 5.  Utilizing a powerful matrix library, the relatively simple functions of the Kalman 
filter were easily adapted to create a Visual Basic .NET application. 

Because radar alone provides abysmal estimates of position and cannot directly measure 
velocity at all, a method for accurately determining both is needed.  Based on our results, the 
Kalman filter is adept at both.  By assuming a normal distribution of errors, it is able to quickly 
and efficiently correct measurement errors and generate velocities without storing large amounts 
of data and performing lengthy computations. 
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