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ABSTRACT 
 

Mathematical relationships can be used to describe both the motion of the planets 
and the positioning of celestial bodies.  Kepler’s Laws, formulated at the beginning of the 
seventeenth century by German mathematician Johannes Kepler, explain the nature of 
planets’ motion around the sun. In this paper, we prove these laws and derive a series of 
mathematical equations that illustrate the geometric relationships of an elliptical orbit 
using a combination of spherical trigonometric principles and calculus.  We then utilize 
these relationships to calculate the time of sunrise and sunset from any given point on the 
Earth.    
 
INTRODUCTION 
 

The planets in our solar system move in elliptical orbits around the sun.  The 
motion of these celestial bodies can be modeled using Kepler’s Laws, elliptical geometry, 
and spherical trigonometry.  Elliptical geometry allows us to utilize a heliocentric model, 
with the sun at one focus, to trace celestial motion.  By deriving Kepler’s Laws, we 
confirm that a planet travels in an elliptical path, sweeps out equal areas in equal times, 
and has a period whose square is directly proportional to the cube of the length of its 
semi-major axis.  Furthermore, through spherical trigonometry, a model of these 
heavenly bodies can be produced which simplifies their motions and can be used to 
predict the times of sunrise and sunset.  The formulae derived to aid the observation of 
celestial motion can be applied to the Earth or to other planets, thus providing a general 
prototype with which to calculate planetary location.  
 
ELLIPTICAL GEOMETRY 
 
The Ellipse 
 

We will see that each planet moves in an elliptical orbit around the sun. The 
equation of an ellipse is: 

12

2

2

2
=+

b
y

a
x  

 
Let  
 
                                                            22 ba −=c                                                          (1) 

 [7-1] 



 
so that (  represent the foci of the ellipse. )0,c±
 

This elliptical orbit has a set eccentricity, which indicates how closely it 
resembles a circle.  While an ellipse with a small eccentricity will tend to take a circular 
shape, an ellipse with a large eccentricity will appear flattened. This causes a great 
difference between its a and b values. Eccentricity is the ratio between c, the distance 
between the center and the foci, and a, the length of the semi-major axis; it is defined by: 
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The sun’s position is at a focus of the ellipse, making it convenient to shift the 

graph of the ellipse so that the sun is at the origin.  To accomplish this, we need to shift 
the graph to the left by a distance c.  To aid in tracing planetary orbits it is helpful to put 
the equation of the ellipse into polar form.  This yields: 
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This formula can be plugged into the quadratic formula to solve for r. Algebraic 
manipulation of this formula yields: 
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The positive sign in the above equation should be chosen because the negative 

sign would produce negative values of r, which are impossible.  For this reason the 
(1 )cosθe− term is dropped to give the simplified version of the equation: 
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Primarily, the planets have elliptical orbits that resemble circles (small 

eccentricities).  For this reason, it is convenient to position a circle with radius a and the 
same center as the ellipse about a given elliptical orbit.  The planet’s position at a given 
time can be easily projected onto the circle. (Fig.1) 
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In order to plot the planet’s location on the ellipse at a given time, we must derive a 
relationship between angle E and angleθ .   
 
The relationship between E and θ 
 
Given the diagram, we find the following relationships: 
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By substituting terms, we obtain new values for both angles involving variables a and e 
only. 
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By substituting the earlier definition of r in the equation for cosθ , we find that: 
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By rearranging terms, cosE can be consolidated on one side so that: 
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After algebraic manipulation, we are left with the final equation for the relationship 
between the two angles: 
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To simplify the equation relating the angle θ and angle E, we use half-angle formulas and 

solve to find a relationship between
2
Etan and

2
tanθ . The half-angle formula of any angle 

E is given by the equation: 
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Substituting equation (3) for cosE yields: 
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This relationship allows the simple conversion between E and θ. 
 
We can now use this information to derive Kepler’s Laws of Planetary Motion.  
 
KEPLER’S LAWS OF PLANETARY MOTION 
 
Kepler’s First Law 
 

To begin the derivation of Kepler’s First Law, we begin with two force functions: 
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where m is the mass of the planet, M is the mass of the sun, G is the universal 
gravitational constant, and r is the distance from the sun.  We now equate them and break 
the force vectors into separate x and y components.  We then change to polar coordinates 
by eliminating x and y and expressing force in terms of r and θ.  The equations now 
become: 
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Differentiating, we have: 
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We will now form two new equations.  For the first, we multiply equation (5) by –sinθ 
and equation (6) by cosθ, then add the two equations to obtain: 
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For the second equation, we multiply equation (5) by cosθ and equation (6) by sinθ, then 
add them to obtain: 
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Next, we introduce a new variable
dt
dp θ

= .  Equation (7) becomes: 

 

dt
dp

pdt
dr

r
12

−=  

 
After integrating both sides, we obtain: 
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which becomes: 
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where h = ec.  Back-substituting p, this becomes: 
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We will now substitute this into equation (8), yielding: 
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At this point, we eliminate the variable r by introducing the variable u = 1/r.  By the 
chain rule, 
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Now, substituting this into equation (10), we obtain: 
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Clearly, the u must be the cosine function: 
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We now back-substitute in the variable r, yielding: 
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We assume that when θ = 0, the planet is at its perihelion, i.e. the distance r from the sun 
is minimized.  Thus, C must also equal 0.  The equation now becomes: 
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Then the equation becomes: 
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Now we must eliminate the variable B.  To do this, we begin with equation (13).  

When angle θ = 0°, the planet is at perihelion and is a distance rp from the sun.  When θ 
= 180°, the planet is at aphelion and is a distance ra from the sun.  The sum of these two 
distances is equal to the distance across the semi-major axis, i.e., 2a (Fig. 2).  Therefore, 
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Solving for B, we have: 
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Now if we substitute equation (14) into equation (13), we have: 
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This is equivalent to equation (3), which has been proved previously.  Therefore, 

planets trace elliptical paths as they rotate around the sun. 
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Kepler’s Second Law 

dt 

 
 
 We begin this proof by stating that as the planet moves, it sweeps out an area 
inside the elliptical orbit.  As θ increases infinitesimally, i.e. dθ, it sweeps out an 
infinitesimally small area within the ellipse, i.e. dA (Fig. 3).  With such small dimensions, 
the ellipse takes on the characteristics of a circle, and dA is roughly equal to a sector of a 
circle with radius r. 

The area of a sector of a circle is found by
2

2θrA = , where r is the radius and θ is the 

angle that sweeps out the sector.  Applying this to the ellipse, we obtain: 
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Dividing by dt, the equation becomes: 
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Substituting in equation (10), we now have: 
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Therefore, 
dt
dA is a constant.  This proves Kepler’s Second Law, which states that over 

equal periods of time, a planet sweeps out equal areas. 
 
 
 
 
 

dθ 

dA 

Figure 3 
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Kepler’s Third Law 
 

Beginning with equation (16) and integrating both sides, we have: 
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When t = 0, the area A swept out by the planet must also be 0, so k = 0, and the equation 
becomes: 
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Now let t = T, where T is the period of the planet, i.e. the amount of time required for the 
planet to complete one revolution around the sun.  At time T, the planet has swept out the 
entire area of the ellipse, found by abπ.  Thus: 
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Substituting 21 ea −=b into the equation, and squaring both sides, we have: 
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We recall h2 in equation (12), and rearranging, we have: 
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Substituting this into the left side of equation (17) yields: 
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Thus, Kepler’s Third Law states that the square of the period is proportional to the 
cube of the semi-major axis of the elliptical orbit. 
 
Showing dM/dt is constant 
 
Let  
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To prove that M varies uniformly with respect to time, it is necessary to show that 
dt

dM is 

a constant.  Differentiating gives us: 
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Using the chain rule and equations (2), (3) and (9) we find: 
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Now we eliminate the variable E temporarily.  To do this, we find the ratio of ye to yc 
using the basic equations for ellipses and circles in basic Cartesian coordinates: 
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Equating these two, we have: 
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Now we substitute this into equation (19) to produce: 
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Now we use equation (2) to eliminate the variable r and equation (3) to eliminate the 
variable E.  The equation now becomes: 
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By substituting h to solve in terms of T we have: 
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This shows that the derivative of M with respect to time is a constant. It 
can be integrated to read: 
 

T
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SPHERICAL TRIGONOMETRY 
 
Introduction 

 
The universe can be viewed as a celestial sphere rotating around a stationary 

Earth.  All heavenly bodies are represented by points on this sphere. Everyday, the 
celestial sphere rotates once around the Earth, changing the position of the heavenly 
bodies in the sky. By finding the relationship between points on the celestial sphere, one 
can plot the positions of such celestial bodies. To accomplish this, it is necessary to find 
the equivalents of the Law of Cosines and the Law of Sines for spherical triangles.  
 
Terminology 
 

A great circle is a circle that shares the same radius as the sphere it lies on.  The 
shortest distance between two points on the surface of a sphere can be found by taking 
the arc of a great circle passing through both points.  A spherical triangle is composed of 
three points on a sphere connected by arcs of great circles.  The angle between two arcs is 
defined as the angle between the tangents to their common point. 
 
Proof for the Law of Cosines for Spherical Triangles 
 

It is possible to derive the Law of Cosines for Spherical Triangles from Fig. 4. 
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Knowing that θ=

R
S  where S is the length of an arc of a great circle and θ  is the central 

angle of that arc in radians, BOC = ∠
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Finding the Lengths of OB`, OA`, B`C`, and A`C` 
 

   
∆Using basic trigonometric definitions for Euclidean Triangles on ∆OB`C` and OA`C`:  
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Figure 4 A sphere sits on a plane and 
intersects it at point C.  Extend the radii of the 
sphere from the center of the sphere to the points 
A and B, until they intersect the plane. These 
intersection points are labeled A` and B`.  [Note:  
∠ C = ∠ C`.]  Triangle A`B`C` is a planar 
triangle for which Euclidian geometry applies.  
a, b, and c are the sides opposite ∠ A, ∠ B, 
and ∠ C respectively.  R is the radius of the 
sphere. RR 
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Finding the Length of A`B` 

  

Note that A`OB` = AOB = 
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In OA`B`, solve for A`B` using the Law of Cosines of Euclidean Triangles. 
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Similarly, in A`B`C`, Solve for A`B`. 
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btaining the Spherical Law of Cosines 

A`B`C and OA`B` have one side in common, A`B`.  Set equations (20) and (21) equal 
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Substitute . Simplify and solve for cosxx 22 sectan1 =+
R
c . 

As a result, the Law of Cosines of Spherical Triangles is: 
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e  a b/ d c/R arwhere R is the radius of the sph re and /R, R, an e the internal central angles. 

 
Proof for the Law of Sines for Spherical Triangles 
 

From the Law of Cosines for spherical triangles, it is possible to derive the Law of 
ines for spherical triangles through algebraic manipulations. 
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Manipulate this equation into a form similar to the Laws of Sines for Euclidean 

riangles. 
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Substitute all of the cos2x terms with 1 – sin2 x and simplify. 
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Thus, the Law of Sines for Spherical Triangles is: 
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Positioning Points on a Sphere 
 

ly bodies as points on the sphere rotating about the Earth, 
which remains stationary at the center of this phere. We then extend the North and South 
Poles to

 

 

long the celestial sphere at 
n angle to the celestial equator. This path is termed the ecliptic. The declination of the 

sun at t

 

We can view the heaven
 s

 the celestial sphere to create the North and South Celestial Poles. We also extend 
the Earth’s equator to create the celestial equator. We create an arc connecting the North 
and South Celestial Poles passing through the vernal equinox (the sun’s position on the 
first day of spring) to create a reference point. Using the celestial equator and this arc, we
develop a system for locating any point on the celestial sphere. We imitate the Earth’s 
latitude and longitude system. The declination (δ) corresponds to latitude and is measured 
in degrees (-90° to +90°); The right ascension (α) corresponds to longitude and is 
measured in hours (24 hours = 360°). As one hour on Earth passes, the celestial sphere 
effectively rotates 15° around the Earth.  

NCP

 

Determining the Declination and Right Ascension of the Sun  

SCP

0 hr 

α 

x hr

Celestial Equator 
Earth

Figure 8

Vernal 
Equinox 

δ

 
The sun viewed from the Earth appears to take a path a

a
he point farthest from the celestial equator is a physical constant ε = 23° 27`. The 

points where the ecliptic and celestial equator intersect occur at the beginning of spring 
and fall. The arc passing through the vernal equinox is marked as the 0hr and is used as 
the reference arc used for right ascension measurements. We draw a perpendicular to the
ecliptic passing through the Earth to create the North and South Ecliptic poles. 
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Next, we want to be able to give the declination and right ascension of the sun on 

e, given the angle λ (Fig. 10). We use the previously derived 
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From the Spherical Law of Sines: 
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Relating Equatorial and Ecliptic Coordinates 

sing the ecliptic, North Ecliptic Pole, and 
outh Ecliptic Pole. The ecliptic latitude is given by

 
Next, we develop a coordinate system u

S β , and the ecliptic longitude is given 
byλ . We then develop equations giving equatorial coordinates from the ecliptic 
coordinates by using spherical trigonometry. 
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e first use the Law of Cosines to find δ in terms of β, λ, and ε. 
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Now that we have δ, we can use the Law of Sines to find α in terms of β, δ, and ε. 
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Finding the Sunrise and Sunset 

n of the sun at sunrise/sunset at any latitudinal position 
n the Earth. To do this we extend the horizon at that point to the celestial sphere. The 

hour an  
 

 
Next we relate the positio

o
gle H (Fig. 12) gives the time from noon until sunrise/sunset. We can find H for a

certain latitudinal position given the declination of the sun on any day, and thus find the
sunrise/sunset on that day. 
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Now substitute: 
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Finding Theta 

θ, the angle that a planet has traveled away from perihelion, we must start 
ith a time t, measured in days since perihelion.  With this value of t, we can substitute 

into the
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w
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where T is the period of the planet.  With all of this, we can find the value of M, which is 
efined to be: d
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Rearranging this equation, we can find an iterative process to approximate the value of E. 
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By allowing to equal M, we can quickly find an accurate value for E.  This value of E 
llows us to solve for θ, because of the relationship between E and θ: 
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Solving this gives us a value for θ. 

 position of the sun from perihelion (θ) to the 
osition of the sun from the vernal equinox (λ) using the known value ω. Figure 13 

illustra

 

 
Finally, we want to relate the

p
tes visually their relationship.  

Planet 

Jan. 3rd  
Perihelion  

θ 

ω 

λ 

May 21st 
Equinox

Sun 

Figure 13  
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Using three equations, we can predict the sunrise and sunset on any given day. We make 
a calculator program to find these times values of any day, and accurately predict the 
sunrise and sunset of August 2nd, 2003 to be 5:55am and 8:09pm. 
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CONCLUSION 
 

By utilizing geometric and mathematical relationships, we have been able to 
evelop a series of equations that govern the movement of heavenly bodies.  Both 

ch 
int in its revolution.  

ur examination of Kepler’s Laws and spherical triangles reveals that planetary motion is 
governed by definite mathematical principles and can be explained using systems of 

 
During this month, we learned about the process of how one would make new 

erive new laws. We learned that segmenting a complicated problem 
akes it easier to solve (Oh wait, we learned that in Kindergarten). Also, sharing is 

importa d, 
Aww, 

d
geocentric and heliocentric models have proved valuable in our examination of celestial 
mechanics.  Using the relationships that we have derived, one can predict the events su
as sunrise and sunset and plot the location of a planet at a given po
O

connections and d
m

nt (Work… of course), and during the learning process, being negative is a ba
bad, BAD thing. We are all better people now that we have completed this project (
I feel all warm and fuzzy inside now!). 


