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ABSTRACT 
 
 Fractals are mathematical structures that have some degree of self-similarity and 
scale independence. As well as being intrinsically interesting from a purely theoretical 
standpoint, fractals are useful in many arenas. This paper explores the use of fractals in 
diverse fields including the more theoretical Sierpinski fractals, Mandelbrot, and Julia sets 
and the more practical areas of modeling natural and physical systems. Ultimately, this 
knowledge of fractals is used to explore a model of a ball bouncing on an oscillating plate 
from a different point of view 
 
INTRODUCTION 
 
 Fractals and chaos theory are some of the most popular and burgeoning fields of 
contemporary mathematics. Fractals were first discussed in the late 19th century in the form 
of nested two-dimensional drawings created in order to debunk the ideas of limits in 
calculus. These designs, the most famous of which were those of Waclaw Sierpinski in 
1916, Karl Menger in 1926, and Paul Levy in 1937, were largely seen as trivial and 
unimportant until the publication of Benoit Mandelbrot's studies in 1975. He equated 
quantitative comparisons of simple fractals with real world observations. He also produced 
some striking pictures with then rudimentary computer display technology. Since his 
discoveries, fractals and chaos theory have become respected branches of mathematics 
whose modeling applications now range from population groups to the human nervous 
system. 
 
 A geometrical fractal is a figure composed of the same pattern, reduced and 
rotated infinitely many times. This defining property is called self-similarity, where the 
fractal’s magnified sections are similar to the whole. Given only a picture of part of a 
fractal, it is usually impossible to tell what the scale of the picture is. This property is 
referred to as scale independence. 
  
 Fractals can be created by assigning a few arbitrary points and repeating an 
iterative rule over and over. The process is recursive and approaches completion as the 
number of iterations grows. Early on in his professional life, Sierpinski created an array of 
geometric fractals by choosing vertices of regular polygons and following an iterative rule 
to determine where to position the next point. After a sizeable number of points had been 
plotted, an (ideally infinitely) self-similar image had formed. The Sierpinksi pentagon is 
shown in Figure 1.  
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Figure 1: Sierpinski pentagon 

 
 The geometric fractals were called Sierpinski n-gons, each of which can be 
created by an algorithm that will be explained later. 
 
 Fractal shapes need not be restricted to regular polygons. In fact, by using 
specific and sometimes complicated iterative rules to plot new points, it is possible to 
create fractals that resemble real world shapes such as shorelines, seashell patterns, 
bronchial tubes and clouds. Fractals can also be used to draw textured landscapes such as 
lunar surfaces and mountains for use in advertisements and movies. Above all, fractals help 
to mathematically define the natural world.  
 
 Fractals also appear in a variety of physics problems. For example, the Henon 
map and Lozi map are two-dimensional fractal maps that describe astronomical orbits. The 
Navier-Stokes equations give rise to the Rössler attractor and the Lorenz attractor, both 
three-dimensional structures derived from fluid mechanics. 
 
 A necessary partner to fractals is chaos theory. The two are very much 
interconnected, and, unintuitively, there is an underlying chaos that can be used to create 
any fractal form. Chaos theory describes random data which are apparently disordered but 
actually have an underlying order. Behavior is difficult or impossible to predict and even 
very careful observation and measurements cannot give indications of how the system will 
act in the future. The theory was developed through Edward Lorenz’s work during the 
1960’s in meteorology. His discoveries led to the famous butterfly effect, where he 
postulated that a single flap of a butterfly’s wing can lead to a hurricane in another part of 
the world. A data set that is most commonly studied in chaos theory is a bifurcation graph 
(Figure 2). The graph starts with one line and begins to branch off in a rapid and chaotic 
fashion. 

 
Figure 2: A sample bifurcation graph 

 
 Perhaps one of the most famous fractal sets is the Mandelbrot set. It is a set of 
complex numbers created via the iteration of a simple equation. Like any fractal, the 
Mandelbrot set is infinitely self-similar. The set is described by the amazingly simple 
recursive equation zn+1 = zn

2 + z0, which gives rise to a very intricate graph. The 
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Mandelbrot set is also related to the quadratic Julia sets in that each point in the Mandelbrot 
set corresponds to a different Julia set. Properties of these sets will be discussed later in 
detail.  
 
 The ultimate goal of this project was to use the knowledge obtained by exploring 
fractals to investigate a well known physical system, a ball bouncing on a vibrating plate. A 
perfect sphere bouncing on an oscillating plate was simulated and analyzed for fractal 
behavior. Fractal patterns of this ball were explored for various strengths of oscillations of 
the plate. 
 
 
FRACTAL DIMENSION 
 
 Fractals are geometric shapes that have the characteristic of self similarity. The 
fractal dimension (more formally called the Hausdorff dimension) is the measure of a 
figure that corresponds to a mapping of an object between integer dimensions. 
Characteristics of a given fractal can be determined from knowing its fractal dimension. 
For instance, the values for fractals on a plane always fall between one and two. This shows 
that these fractals only “fill up” a portion of the plane, and are somewhere “between” a line 
and a plane (2). 
 
 The fractal dimension was calculated using the following two methods: the 
geometric formula and the box counting method. To use either of these methods the fractal 
must be considered as a set of points on a square grid. The grid is then divided into squares 
and the squares that contain any of the points in the set of the fractal are counted. The grid 
must be partitioned into squares that are self similar.  This process is repeated five or six 
times using squares of different sizes (3). 
 

With the box counting method, the values obtained from the previously explained 
process are employed to generate data, which is plotted in a double log plot. Plot the natural 
log of the number of squares containing the fractal versus the natural log of the inverse of 
the number of squares on one side of the grid. The slope of this line is the fractal dimension. 
 

In the second method, the dimension is calculated according to the following 
equation: 

 
Dimension = ln(self similar figures) / ln(magnitude) 

 
Using these two methods, the fractal dimension for the four following fractals were 
calculated: the Sierpinksi triangle, the fractal fern, the fractal maple tree, and the 
bifurcation map of the logistic equation. 
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Table 1: The Sierpinski triangle 
 

Magnitude 
(n) 

# of Squares 
(x) 

Ln(1/n) ln(x) FD from 
slope 

FD from 
formula 

2 4 0.693147181 1.386294361 1.584962502 2
4 12 1.386294361 2.48490665 1.736965593 1.79248125
8 40 2.079441542 3.688879454 1.857980996 1.773976032
16 145 2.772588722 4.976733742 1.907553751 1.794977273
32 544 3.465735903 6.298949247 1.817492568 1.817492568

 
Table 2: The fractal fern 

 
Magnitude 
(n) 

# of Squares 
(x) 

ln(1/n) ln(x) FD from 
slope 

FD from 
formula 

2 4 0.693147181 1.386294361 1.321928095 2
4 10 1.386294361 2.302585093 1.159171578 1.660964047
6 16 1.791759469 2.772588722 1.357552005 1.547411229

12 41 2.48490665 3.713572067 1.584962501 1.494451338
24 123 3.17805383 4.812184355 1.514192211 1.514192211

 
Table 3: The fractal tree 

 
Magnitude 
(n) 

# of Squares 
(x) 

ln(1/n) ln(x) FD from 
slope 

FD from 
formula 

2 4 0.693147181 1.386294361 1.459431619 2
4 11 1.386294361 2.397895273 1.494764692 1.729715809
8 31 2.079441542 3.433987204 1.569404213 1.65139877

10 44 2.302585093 3.784189634 1.551795637 1.643452676
20 129 2.995732274 4.859812404 1.622245234 1.622245234

 
Table 4: The bifurcation graph of the logisitc function 

 
Magnitude 
(n) 

# of Squares 
(x) 

ln(1/n) ln(x) FD from 
slope 

FD from 
formula 

8 38 2.079441542 3.63758616 1.574761559 1.749309171
10 54 2.302585093 3.988984047 1.773729554 1.73239376
13 86 2.564949357 4.454347296 1.260521513 1.736621927
15 103 2.708050201 4.634728988 1.842509619 1.711463468
20 175 2.995732274 5.164785974 1.724047913 1.724047913

 
Now, we will discuss how to create each of these fractals in more detail. 
 
 
SIERPINSKI N-GONS 
 
 The career of the Polish mathematician Waclaw Sierpinski was one of the most 
profilic of the 20th century. In honor of his accomplishments, his name was bestowed upon 
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a fascinating set of geometric fractals. The main concept behind these fractals is to create 
fractals using basic geometric figures. The simplest example is the Sierpinski triangle. As 
the name implies, a triangle is the starting point for this figure. Although the one pictured is 
equilateral, this is not a requirement to generate the fractal. The triangle is split into four 
congruent triangles by connecting the midpoints of each side. The center triangle is then 
removed, and the process continues with the remaining triangles. The first three steps of 
this process are shown in Figure 3. 

 
Figure 3: Steps 1-3 of constructing the Sierpinski triangle 

 Using a similar procedure, other Sierpinksi polygons can be generated. Although 
the triangle can be completely composed of similar triangles, most other polygons do not 
have this property of being self-tiled. Thus, for example, a Sierpinski pentagon (Figure 4) 
contains blank areas that do not resemble the original figure. 

 

Figure 4: Sierpinski pentagon 

 There is another more interesting way to generate the Sierpinski fractals. First, start 
with a triangle and any point inside the triangle. Then randomly select one of the vertices of 
the triangle, and draw the midpoint between the vertex and the starting point. Now repeat, 
using this midpoint as the starting point. This eventually generates the Sierpinksi triangle 
as seen in Figure 5. This process can be generalized to more complicated figures. In this 
model, the vertices are called orbit points, because midpoints are being continually drawn 
towards them (5). We created a general formula for any n-gon, and used it to produce the 
famous Sierpinski 17-gon (Figure 6). 
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Figure 5: Sierpinski Triangle 

 

Figure 6: Sierpinski 17-gon 
 
 
FRACTALS IN NATURE 
 
 Though fractals such as the Sierpinski triangle may seem to be purely mathematical 
phenomena, there are other properties of fractals that arise from a very different source - 
nature. Such fractals of the natural world often appear in the form of ferns, trees, clouds, 
pine cones, human bronchial tubes, and even bacterial colonies. Despite the variety of 
fractal behavior found in nature, they all contain the self-similar properties, scale 
independence, and infinite detail that defines them as true fractals (3).  
 
 Like fractals derived from formulaic calculation, fractals in nature are also capable 
of representation through algorithmic equations. Therefore, these fractal patterns can easily 
be created and displayed using a computer. 
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Fractal Fern 
 
 The fractal fern is created through a series of steps where points Xn,Yn are inserted 
into their respective algorithms to produce Xn+1 andYn+1. To construct the fractal fern’s 
particular structure, various probabilities indicate exactly which formula to apply to X and 
to Y.  

Table 5: Probabilities and formulae for fractal fern 
 

Probability Xn+1 Yn+1 

0.01 0 0.16Yn 

0.85 0.85Xn + 0.04Yn -0.04Xn + 0.85Yn + 1.6 

0.07 0.20Xn – 0.26Yn 0.23Xn + 0.24Yn + 0.44 

0.07 -0.15Xn + 0.28Yn 0.26Xn + 0.24Yn + 0.44 

 
Values for the initial X and Y are arbitrarily picked and new points are choosen 

through a large number of iterations of the equations in Table 5. The equation to use in each 
step is chosen using a random number generator and the probabilities stated in Table 5. 
Each resulting X and Y value is then plotted on a graph, and the image produced looks 
remarkably like a fern (Figure 7). 

 
 

 
Figure 7: Fractal fern 

 
Fractal Tree 
 
 Construction of the fractal tree follows the same procedure as that of the fractal fern. 
Variations only arise from the specific probability values and the algorithmic formulae, 
shown in Table 6 (5). 

 

[3-7] 
 



Table 6: Probabilities and formulae for fractal tree 
 

Probability Xn+1 Yn+1 
0.1 0.05Xn 0.6Yn 
0.1 0.05Xn -0.54Yn +1 
0.2 0.46Xn – 0.32Yn 0.39Xn + 0.38Yn + 0.6 
0.2 0.46Xn – 0.15Yn 0.17Xn + 0.42Yn + 1.1 
0.2 -0.43Xn – 0.28Yn -0.25Xn + 0.45Yn + 1 
0.2 0.42Xn + 0.26Yn -0.35Xn + 0.31Yn + 0.7 

 

 
Figure 8: Fractal tree 

 
 
FRACTALS IN PHYSICS 
 

Certain physical systems and equations also produce fractals and chaotic structures. 
These include the Henon map, the Lozi map, and the Gingerbread man map. The first two 
are used in the study of astronomical orbits. All are 2-dimensional structures whose points 
are generated by recursive equations. For example, the equations for the Lozi map are:  
 

xn+1= 1 - a|xn| + yn 
yn+1 = bxn 

 
Not all values of the coefficients a and b or initial point (x0, y0) produce the Lozi 

map. The values a = 1.7 and b = 0.5 and an initial point of (0, 0) were used to generate 
Figure 9. Similar procedures create the Henon map and Gingerbread man map (Appendix 
B). 
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Figure 9: Lozi map 

 
Also studied were the Rössler attractor and the Lorenz attractor, both of which are 

3-dimensional structures derived from the Navier-Stokes equations for fluid dynamics. 
They are generated using differential equations. The Lorenz attractor, for example, can be 
produced using the following equations: 

 
dx/dt = a(y - x) 

dy/dt = bx - y - x 
dz/dt = xy - cz 

 
where x, y, and z are the coordinates of a point, and a = 10, b = 28, and c = 8/3. These 
equations are then discretized and iterated over as in prior examples. Again, the figure is 
dependent on the initial coordinates which were chosen to be (0, 3, 0) to create Figure 10. A 
similar procedure was used for the Rössler attractor (See Appendix B). 

 
Figure 10: Rössler attractor 

 
 
THE MANDELBROT SET AND JULIA SETS 
 

A discussion of fractals would not be complete without discussing the Mandelbrot 
set (Figure 11). It illustrates the following three important properties of fractals: it can be 
generated by iterating a simple equation, it shows self-similarity, and it has both a finite 
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area and a fractal dimension. It is one of the most interesting fractals, aesthetically 
speaking, and has had much time devoted to it. The Mandelbrot set is defined by a 
deceptively simple equation, 

 
zn+1 = zn

2 + C. 
 

The set consists of all values of C such that the zn does not increase without bound as n goes 
to infinity. Any point z on the complex plane where |z| > 2 cannot be part of the Mandelbrot 
set (Appendix A for proof). The number of iterations it takes for zn to exceed the |z| = 2 
threshold is used to create the color coding of the Mandelbrot set. The Mandelbrot set itself 
is only the enclosed region displayed in black. 

 

 
Figure 11: The Mandelbrot set 

 
In generating the Mandelbrot set using a computer algorithm, we must consider 

both the number of iterations before convergence is accepted and the size of the region to 
display. Graphic representations of the fractal demonstrate the significance of the first 
factor. Looking at the rendition of the entire fractal, color transitions from shades of red to 
shades of green can easily be seen. Each of these colors represents a set of C’s for which 
the zn’s exceeded 2 after a certain number of iterations. If 1 is used as the number of 
iterations before accepting convergence of a C, the circle r = 2 is produced rather than the 
Mandelbrot set. The more iterations used, the more the result looks like the Mandelbrot set. 
The portion of the plane displayed affects the number of iterations needed for a satisfactory 
image. If only a very small region near the border of the set is examined, more iterations 
would be needed than if the set were looked at as a whole. 

 
Not only can the simple equation zn+1 = zn

2 + C map the Mandelbrot set, it can be 
used to map the quadratic Julia sets as well. The original purpose of the Mandelbrot set was 
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to describe the quadratic Julia sets. The Mandelbrot set itself represents the set of all points 
C such that the Julia set for each of those points is connected. The Julia set for C is mapped 
by iterating zn+1 = zn

2 + C for all different values of z0 while holding C constant. These sets 
often appear similar to the region surrounding their corresponding point in the Mandelbrot 
set. Julia sets with C’s in the large cardiod appear as one compact blob (Figure 12a). Border 
Julia sets resemble the border structures of the Mandelbrot set (Figure 12b). Julia sets with 
C’s outside the Mandelbrot set are extremely fragmented sets referred to as Fatou or Cantor 
dust (Figure 12c). In this way, the Mandelbrot set and Julia sets can be used as tools to 
further explore one another (3). 
 

 
Figure 12: Three Julia sets 

 
Self-Similarity and the Mandelbrot Set  
 

The Mandelbrot set's self-similarity is evident from its graphic representation. The 
most noticable region of the set is the large cardiod on the right. Tangent to this cardiod at 
C = -.75 is a circle, and tangent to it at C = -1.25 is another circle. Zooming further in, more 
self-similarity becomes apparent. No matter how far you zoom in on the circular regions, it 
will still appear almost the same. An even more convincing example of self similarity can 
be found centered at C = -1.75. There can be found an almost identical replica of the 
Mandelbrot set. Self-similarity is plainly illustrated by zooming in around C = -1.26 - .475i 
(Figure 13). A spiral section of the Mandelbrot set looks under one magnification as if it 
were simply a rotated image of another. 
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Figure 13: Mandelbrot set shown at coordinates [-1.276 + -.392i, -1.236 + -.364i] 

 
Finite Area, Fractal Dimension, and the Mandelbrot Set 
 

The Mandelbrot set is unbelievably intricate. So intricate, in fact, that the most 
powerful computers and the greatest mathematicians are able to give us only a range for the 
area covered by the set, and quite a wide one at that. The proof that it is finite is simple 
(because |z| must be less than 2, the circle r = 2 sets an upper bound for the possible area at 
4π), but homing in on the exact number is far more challenging. There are many methods 
for approximating the area of the set, but most can agree on at least five digits after the 
decimal: 1.50659. When you consider that by the year 300, the Chinese mathematician Liu 
Hui approximated π to five digits, it is clear that there is much to learn about the 
Mandelbrot set. 
 

It is known, however, that the border of the Mandelbrot set has infinite length, and 
that its fractal (Hausdorff) dimension is 2 (Mitsuhiro Shishikura published the proof of this 
in 1994). No fractal that can be mapped on the plane can have greater fractal dimension, for 
the plane itself has a dimension of 2. Thus, as far as fractal dimension goes, there exists no 
more complex planar fractal than the Mandelbrot set. 
 
 
CHAOS THEORY 
 

Chaos theory describes objects that appear disordered but actually have an 
underlying order. A bifurcation graph is an example of data that can be described by chaos 
theory. Bifucation is a process where a single solution to an equation splits and develops 
multiple solutions at specific points until the branching becomes so dense and 
indecipherable that the data can only be described by chaos. A bifurcation graph can be 
created using the logistic equation: 

 
xn+1 = r * xn* (1-xn). 

 
For low r, xn converges to a single number. However, as r increases beyond 3, xn will 
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oscillate between two values in a steady state. This process of splitting will continue, 
creating four values then eight then sixteen, and so on. The values of xn will oscillate 
between the various values. Each splitting is referred to as a bifurcation. Beyond a certain 
critical value, the bifurcations stop and the value of xn jumps around chaotically as shown 
in Figure 14. 

 
Figure 14: Bifurcation graph of the logistic function (0 < r < 4) 

 
At r = 4 the x value drops down to 0 for an initial value of xn = 0.5. After this point, 

the x values immediately drop to negative infinity and are no longer included in the 
bifurcation graph. 

 
We then used the box counting method to determine the fractal dimension of this 

bifurcation graph. Since the box counting method specifies a square as the area that is in 
question, only the 3 < r < 4 range of the bifurcation graph was analyzed. The fractal 
dimension of the bifurcation graph was found to be approximately 1.724.  
 

The next challenge was to determine Feigenbaum's constant, δ. Feigenbaum's 
constant describes how quickly a function bifurcates and approaches chaotic behavior. It 
was discovered by Feigenbaum in 1975. As one can tell by looking at the bifurcation graph, 
the distance between each bifurcation becomes smaller and smaller. The constant is 
defined as the limit of ∆rn/∆rn+1 as n goes to infinity where ∆r is the change in r between 
succesive bifurcations. Table 7 gives an overview of the first few values in finding the 
constant. 
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Table 7: Calculation of δ 
 

r num. of branches ∆r ∆ 
1.000 1   
3.000 2 2  
3.450 4 .45 4.444 
3.544 8 .094 4.787 
3.565 16 .021 4.476 
3.570 32 .005 4.200 

 
This process continues and δ approaches the value 4.669. This constant underlies 

the process of bifurcation, fractals, and chaos. 
 
 
BALL IN OSCILLATING BED 
 

Many real-world situations, such as the movement of shockwaves in an earthquake 
or sand blowing on a beach, can be simulated accurately by calculating each and every 
collision between particles. Considering the enormous number of particles involved in any 
realistic situation, this would take huge amounts of time on even the most powerful 
computers, and there are no obvious shortcuts. However, the overall result of each situation 
comes from many applications of fairly simple rules. This type of complexity arising from 
the repetition of simple calculations tends to show signs of fractal behavior. It may be 
possible to find fractal characteristics that describe the solution to these complex problems 
in terms of much simpler ones. Specifically, we simulated an ideal ball on a vertically 
vibrating plate. 
 

This turned out to be a successful search for fractal behavior. Fractal behavior 
appears in the movement of the ball as the energy of the plate is increased. The quantity 
used to search for this fractal behavior is called Γ and is given by the equation 

 
Γ = Aω2/g 

 
where A is the amplitude of the plate’s oscillation, ω is the frequency, and g is 9.8 m/s2. As 
Γ is increased, one frequency was expected to be the only significant one. After a certain 
point, though, it was observed to split, and two frequencies were suddenly present. It was 
suspected that this splitting, or frequency bifurcation, would repeat many times at higher Γ, 
giving four, then eight frequencies. This could result in a bifurcation map which would 
show fractal behavior similar to the logistic map. 
 
 Creating a basic simulation was relatively simple.  A program was created that 
expressed the ball and plate visually. The collisions were detected merely by testing 
whether or not the ball had passed below the top of the platform.  If this event occurred, the 
ball would change direction, its new velocity would equal two times the velocity of the 
plate minus the velocity of the ball at collision.  In addition to displaying the ball’s motion, 
it produced data describing the ball’s path and the frequency of its collisions. Graphing this 
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data provided clear evidence for bifurcation at lower values of Γ, creating four distinct 
collision paths with Γ ≈ 4.0. 

 

Figure 15: One frequency at Γ ≈ 1.67, two 
frequencies at ~3, and four frequencies at ~4 

 
 
 
In order to study the component frequencies, it was necessary to create a 

high-precision computer simulation. This was actually a much more complex problem than 
expected. The normal way to simulate such a system can have significant amounts of error, 
and the only way to reduce the error is to let the simulation use much greater amounts of 
computer time than was available. Instead, the simulation made use of a mathematical trick 
that allowed the possible collision range to be split into many pieces, each containing only 
one possible collision point, and then searched through each for the actual collision point. 
This allowed a much higher precision than would have been previously possible. 
Afterwards, a Fourier transform was used to split the results into the component 
frequencies. 
 

After running the data through the Fourier transform1, the result did not show any 
significant patterns in Γ, where bifurcation had already been clearly observed. 
Unfortunately, the Fourier transform was not capable of finding the splitting frequencies 
due to complex nature of the bifurcation. However, there is no dispute that the bifurcation 
itself does occur. 
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Stable and resonating phase constants and attractors 
 
 Perhaps the most notable observation made during the simulation process was that 
some values of Г cause the system to approach a resonant frequency, that is a frequency 
that causes the ball to continuously gain energy reaching higher and higher heights.  For 
resonant phase constants, the plate adds as much velocity as is needed to consume one or 
more extra periods of the plate’s motion.  In the simulation, the plate’s frequency was held 
constant at 20 Hz.  A little math and physics show the presence of stable and resonance 
points: 
 

∆(∆t) = nT 
2v/g = nT 
v  = ng/2f 

∆vattack = πng/ω = 2Aωcos(φ) 
πn/2Γ = cos(φ) 

 
 There is a trivial solution to the equation for any Г, if n = 0 and φ = π/2 or 3π/2.  
These two φ values represent the ridge and the trough of the plate’s motion.  If the ball is 
allowed to hit the plate at either of these phase shifts at any velocity of the form ng/2f, the 
ball will bounce off that same point ad infinitum.  There are non-trivial solutions as well, 
but only for Г ≥ π/2.  Only then can the plate generate enough speed to impart a large 
enough impulse on the ball so that it might jump ahead a period.  Each φ where the plate 
velocity is positive has a corresponding φ equal to π-φ for which the plate velocity is 
negative (and thus the resonance is negative).  Also, if φ is a resonance point, -φ is also a 
resonance point.  For φ>π, another quadruplet of resonance points appears. 
 
 The simulation, however, only discovered some of these resonance points.  For 
several φ-values, the ball began oscillating around the resonances at almost the exactly the 
same time, and their final maximum heights were almost identical.  In fact, all values of Γ 
between 3.147 and 3.311 reached maximum heights that were nearly identical.  Never did 
the ball seem to oscillate around the resonances where sin(φ) was less than zero.  The 
resonances were also clumped just after the values of nπ/2. 
 
 The first observation may be somewhat of a fluke.  The launch phase constant and 
velocity were very close to the phase constant and velocity of the resonance for those 
values of Г, because those aspects of the launch were held dependent on Г.  The second and 
the third are more relevant, and are understood best in conjunction with one another.  The 
phase constants that were a certain decimal greater than π/2 resulted in the ball converging 
around the resonance point, while those much greater than π/2 either took longer to 
converge or failed to converge at all. 
 
 It appears that some of the resonance points are acting as attractors, points that act 
much like the orbit points of the Sierpinski n-gons—which often cause fractal structure, as 
in the Lorenz and Rossler attractors.  The attractors have the ability to correct φ-velocity 
pairs that are slightly off the resonant values.  The most powerful attractors appear to be 
those with sin(φ) nearest zero.  However, when sin(φ) gets very close to zero, the attractors 
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appear to lose their strength.  A mathematical approach to the situation again provides the 
answer.  When φ is just slightly less than the φ of resonance, the impulse the ball receives 
from the plate is stronger than it would receive at the φ of resonance. For example, it’s just 
strong enough to kick it more than a period ahead for the next collision.  The problem for 
attractors with very small φ is that their radius of attraction is very small.  The attractor is 
effective only on φ values that are greater than –φ of resonance.  It is only for those values 
which the velocity of the ball will be increased enough for it to skip more than a whole 
period of the plate’s motion. 
 
 
CONCLUSIONS 
 
 Many aspects of fractals were explored throughout the project. Combining the 
random walk method with the general magnification formula for Sierpinski n-gons, 
students created a program which generated the coordinates of any Sierpinski n-gon. 
Rather than relying on time-consuming and complex recursive processes, the Sierpinski 
n-gons were generated quickly using random numbers. Most of the other fractals were 
generated through simple iterative processes which proved to be sufficiently time-efficient. 
These fractals included naturally-occurring fractals, such as the fractal tree, the fractal fern, 
as well as fractals based on patterns in the complex number system, such as the Mandelbrot 
and Julia sets. Using either the box counting method or an equation based on the size and 
number of certain regular fractals, the fractal dimension of each of these patterns was 
determined, demonstrating that figures are not two-dimensional simply because they exist 
on a plane. Furthermore, these studies in fractals were applied to situations in classical 
physics, specifically in an attempt to assess the fractal nature of the frequency of a ball 
bouncing on a platform moving vertically via simple harmonic motion. A simulation of the 
ball’s motion showed that as the frequency and amplitude of the platform were changed, 
the frequency of the ball’s collisions bifurcated. Essentially, at still-undetermined values of 
Γ, a graph of frequency versus Γ would appear similar to the bifurcation graph of the 
logistic equation. Due to time constraints and the precision required for locating the fixed 
points, the graph could not be generated with the visual simulation. 
 
 The limited success of this simulation still provides sufficient leads to direct future 
experiments. One might write a purely mathematical analysis of the ball’s movement and 
generate the data necessary for the creation of a bifurcation graph. In future studies, 
individuals might study the motion of several bouncing balls in two or even 
three-dimensional environments. Ultimately, the resulting studies in particle movement 
can be applied to real-world situations such as granular vibrations or earthquakes. Perhaps 
they can provide a more feasible means of simulating these complex environments. 
Concerning the other fractals, only a handful of patterns have been assessed in this study. 
Sierpinski’s work can be applied to three-dimensional environments, generating fractals 
with yet-uncalculated fractal dimensions. Many more naturally-occurring fractals exist, 
including even many organs and organelles within the human body. These organic fractals 
have fractal dimensions between two and three, and thus can only be assessed in further 
studies of three-dimensional fractals. Mathematically, fractals can even be generated in 
environments with even four or more spatial dimensions. Students in this project were able 
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to implement the box counting method by drawing grids and counting squares. For future 
studies of higher-dimension fractals, mathematical and computer-dependent methods 
presumably must be implemented. It appears that each accomplishment in the field of 
fractals generates a number of questions exponentially greater than the number that it 
answers. 
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APPENDIX B – FRACTAL FORMULAE 
Maple tree: 

Probability  Xn+1 Yn+1 
0.10 0.05Xn 0.6Yn 
0.10 0.05Xn -0.054Yn +1 
0.20 0.46Xn-0.32Yn 0.39Xn +0.384Yn +0.6 
0.20 0.47Xn-0.15Yn 0.17Xn + 0.42Yn + 1.1 
0.20 -0.43Xn-0.28Yn -0.25Xn + 0.45Yn + 1 
0.20 0.42Xn + 0.26Yn -0.35Xn + 0.31Yn + 0.7 
 
Fractal fern: 
0.01 0 0.16Yn 
0.85 0.85Xn + 0.04Yn -0.04Xn + 0.85Yn + 1.6 
0.07 0.02Xn – 0.26Yn 0.23Xn + 0.22Yn + 1.6 
0.07 -0.15Xn + 0.28Yn 0.26Xn + 0.24Yn + 0.44 
 
Lozi: 
Xn+1 = 1 – 1.7 |Xn| + Yn 
Yn+1= 0.5 Xn 
Initial point (0,0) 
 
Henon: 
Xn+1 = 1 – 1.4Xn

2 * Yn 
Yn+1 = 0.3Xn 
Initial point (-1, 0) 
 
Gingerbread 
Xn+1 = 1 + |Xn| - Yn 
Yn+1 = Xn 
Initial point (-0.01, 0) 
 
Rössler: 
dx/dt = -y – z 
dy/dt = x + 0.2y 
dz/dt = 0.2 + xz – 5.7z 
initial point (0, 1, 1) ∆t : 0.04 
 
Lorenz: 
dx/dt = 10(y – x) 
dy/dt = 28x – y – xz 
dz/dt = xy – 8/3z 
initial point (0, 3, 0)  ∆t : 0.02 
 


