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ABSTRACT 
 

The purpose of this team project was to investigate the motion of celestial bodies. First, 
we derived Kepler’s Laws. We were then able to calculate a planet’s angle in orbit in relation to 
its perihelion by translating an ellipse, expressed in polar coordinates, and constructing an 
auxiliary circle. By introducing spherical trigonometry, we were able to track a body’s 
movement on the celestial sphere. In addition, we used trigonometry to calculate the angles of a 
rotation of a shadow at different times of day, and constructed a sundial. Finally, we successfully 
unified our studies of Kepler’s Laws, the geometry of ellipses, and spherical trigonometry to 
pinpoint the position of the Sun and planets on the celestial sphere at any given time. Our 
findings could be further applied to the movement of other celestial bodies. 
 
INTRODUCTION 
 

In 1618, after years of observation and careful formulation, the crowning achievement of 
Johannes Kepler was complete. The three laws of planetary motion, revolutionary in their new 
elliptical view of the solar system, suggested a radically new yet unproven view of planetary 
motion. The appearance of Newton’s gravity laws and system of calculus marked down in theory 
what was once postulated years before. The cosmos, held together by the universal Newtonian 
gravity laws, was conquered by a new physics.  

 
The aim of this team project was to follow and reassert what was and is an incredibly 

important conjunction of observation and theory. First, it was necessary to derive Kepler’s Laws. 
The study of elliptical geometry then allowed us to make practical use of the equations we had 
derived. Through the determination of a law of cosines and a law of sines for spherical triangles, 
we were able to model a planet’s motion on the celestial sphere. We also made a sundial. 
 
PART I: KEPLER’S LAWS 

 
Kepler’s First Law 
 

Kepler’s First Law allows one to calculate the distance r between a planet and the star it 
orbits given θ , the angle between the major axis of the planet’s orbit and the line connecting the 
planet and the star.  We begin with a diagram of the planet and a star (Fig. 1). 
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A planet of mass m experiences a gravitational force F towards a star of mass M.  The x-
axis is defined to be the major axis of the planet’s orbit.  The center of the star is located at the 
origin.  Let the x-component of  be  and the y-component of be .   F xF F yF

 
Using Newton’s Law of Universal Gravitation: 

2r
GMmF −= (where G is the gravitational constant), and 

Newton’s Second Law of Motion, maF = , we can 
express  and  in two different ways: xF yF

Figure 1:  
A graph of the 
force vector. 
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From the diagram, we see that θcosrx =  and θsinry = .  
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Finding the second derivative of θcosr , you obtain 
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Likewise, the second derivative of θsinr is 

     θθθθθθθθ sincos2sincossin
2

2

2

2

2

2

2

r
dt
d

dt
d

dt
dr

dt
rdr

dt
dr

dt
d

⎟
⎠
⎞

⎜
⎝
⎛−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= . (4) 

Insert the second derivatives (3, 4) into equations (1) and (2) to obtain 
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Multiply (5) by θsin , multiply (6) by θcos−  and add the resulting equations to obtain:  
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Multiply (5) by θcos , multiply (6) by θsin  and add the resulting equations to obtain  
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To make calculations easier, we let 
dt
dp θ

=  and substitute this into (7). After algebraic 

manipulation, we get 
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We integrate each side where the constant of integration is h  to get 
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Substituting this back into (8) and simplifying, we obtain 
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Therefore, to obtain the smallest value of r, which we have defined to occur when 0=θ , 

we maximize 2cossin
h

GMBA ++ θθ . 

To maximize 2cossin
h

GMBA ++ θθ , we take the derivative with respect to θ to obtain 

any critical points and get 
θθ sincos BA − . 

Now we equate this to 0 and obtain the equation 
θθ sincos BA = . 

Substituting 0=θ , we find that A = 0. Now, our equation (10) becomes 
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the equation of an ellipse in polar form. 
 
Kepler’s Second Law 

 

Fig. 2 : Kepler’s 
Second Law.  

A1=A2 

A line joining a planet and its star sweeps out equal areas during 
equal intervals of time. If a planet is closer to the sun, it will orbit 
faster, and if it is further from the sun, it will orbit slower. 
As you can see in Fig. 2, Area 1 and Area 2 are equal in size. 
 
In order to derive this law, we must show that the change in area for    
some change in time is not dependent on any other variables. We 
start with the circular equation for area, approximating the ellipse as 
a circle. 
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After manipulation, it becomes 
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From our earlier calculations, we can recall the following substitution (9) that can be used to 
further simplify the equation 
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d
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Since h is a constant, 
2
h  is a constant, and 

dt
dA  is a constant, the area swept out by the earth in its 

orbit around the sun is equal during equal intervals of time.  
 
Kepler’s Third Law 
 
Kepler’s Third Law describes the relationship between the period (T) of a planet and the 
semimajor axis of its orbit (a). Deriving it produces an equation relating T2 and a3. 

We start with 
dt
dA , which is a constant according to Kepler’s Second Law (11): 

2
h

dt
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= . 

We integrate 
dt
dA  from 0 to T to represent the area of the elliptical orbit of a planet: 
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T
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We also know that the area of an ellipse can be expressed as 
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b 21 ea −⋅= . 

Then, because    )1( 2eaGMh −⋅⋅= ,          (12) 
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Therefore, T2 and a3 are related by a factor of 4π2 / GM. 
 
PART II: STUDYING ELLIPTICAL GEOMETRY 
 

For this part of the team project, we needed to study the patterns and equations associated 
with an ellipse, to better understand the processes of planetary motion. This knowledge 
eventually helps to unlock the practical applications of Kepler’s Laws for the greater goal of 
trying to pinpoint the exact locations of the planets at any time. 
 
Ellipses as Functions of Polar Coordinates 
 

Before we begin to uncover any patterns involved with the motion of the planets, it 
should first be mentioned that for all of the planets’ orbits, the sun lies on one focus of their 
elliptical orbits. It is easiest to continue discussing planetary motion by placing the sun at the 
origin on a standard xy-coordinate plane. In order to do so, we need to shift the ellipse (Fig. 3) to 
the left by c, the length of one focus from the origin: 

 

 

Fig. 3: 
An Ellipse 

Fig. 4: An Ellipse 
centered at a focus 
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 ( (14) 
 
Now, the focus at the origin (Fig. 4) represents the position of the sun, with the path of a 

planet’s orbit around it. This shift allows us to simplify the equation for the ellipse by converting 
it into polar-coordinates (Fig. 5). r will represent the distance from the sun to the planet and θ 

will represent the angle that the planet makes with 
the sun and the x-axis, respectively. (14) becomes 
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Now we refer to the polar-coordinate definitions 
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Fig. 5: An ellipse 
defined in polar form
 In order to simplify further, we can change (15) to include 
nly cosine by using the trigonometric identity ( ). θθ 22 cos1sin −=

θθθ cos2coscos 2422222222 cbbrararb −=−+  
( )( ) θθ cos2cos 24222222 cbbraabr −=+−  

2242222 cos2cos rabcbrc =+− θθ  
( ) ( )222cos arbcr =−θ  

arbcr −=− 2cosθ  
 

Note in this last step, the negative root of ar was taken. If the positive root was taken, the 
inal answer would be negative for all values of θ, but r, the distance from the sun to a planet, can 
nly be positive. This leads us to 
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2
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+
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The following are standard equations that relate the different measurements of an ellipse 

o each other. “e” denotes the eccentricity of an ellipse, which in rough terms measures how 
lose the ellipse is to a circle. Values of e range from 0 to 1, or perfectly circular to highly 
longated. 

2222222; eaabcabaec −=→−==  

θcos

222

aea
eaar

+
−

=  

( )
θcos1

1 2

e
ear

+
−

=       (16) 

 [7-6] 



 
Simplifying Irregularities in Elliptical Motion
 

After determining an equation that defines planet 
location along their orbit, we have to tackle the problem of 
motion along this path. When a planet revolves around the sun, 
its speed is always different depending on its distance from the 
sun. Rather than trying to find an equation that will determine 

the velocity of the planets a
a given time, it is easier to 
relate elliptical motion to 
some value that changes at 
a constant and definable 
rate. For this process, our 
ellipse is moved back to its 
original position, centered on the origin, with a circle drawn 
around it with radius, a (Fig. 6). 

t 

a constant: 

   
 

  

 

Fig. 6: An auxiliary 
circle with radius a. 

 
From any point on the ellipse, P, there exists a point, 

P’, on the auxiliary circle that lies on the shortest line 
perpendicular to the x-axis through point P (Fig. 7). 

 
The angle created by P’ and the x-axis through the 

origin is termed E. The angle created by P and the x-axis through the focus is still θ. While θ 
changes at an irregular rate, E changes much more regularly. Thus, we can establish a 
relationship between θ and E which will eventually be used to define the motion of the planets as 

Fig. 7: On the auxiliary 
circle, there exists point P’. 

xEa =cos

r =θcos cx −
 

cos aeEa =− θcosr
Remember now that by shifting the 

ellipse and converting its formula to polar 
coordinates, we established a relationship 
(17) between r and θ: 

 

( )
θcos1

1 2

e
ear

+
−

=

    

(17) 
 
 
 
 
(18) 
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θ
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=Fig. 8: An ellipse with 
constituent parts a, E, c,θ , 
point P, and point P’.  
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Unifying Elliptical Geometry with Kepler’s Laws 
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Substitute (21) into (20) to get 
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Using trigonometric substitution on equation (21), we know that  
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It is possible to insert these equations into the (23) and get 
 

( )

2

2

222

2

cos1
coscoscos21

1
cos1

cos1
a
h

e
eeedt

dM
⋅

+
−+

+

⋅
⋅+

−
=

θ
θθθθ

θ . 

 
 
Through further expansion, we get 
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Recall (12): 
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Simplify using this equation and get 
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Previously, we had the equation (13): 

With this equation (13), solving for T, we get 
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T
aaGM π2

= . 

 
Plugging this into the main equation (27), we get  
 

TTa
a

dt
dM ππ 22

==  

 
So the final result is that 
 

Tdt
dM π2

= . 

 
Integrating, and finding the constant of integration to equal zero, we conclude: 
 

t
T

M π2
=  

 
To demonstrate a usage of the derived equations, the following problem was drawn 

up: given a date of the year, find the reference angle θ of the Earth in relation to its position when 
it is the closest to the sun. In this case, we chose the date August 4, 2005. The point at which the 
Earth is closest to the sun, the perihelion, is found at t = 0, and is around January 4 each year. 
August 4 is 212 days after January 4; thus for this situation, t = 212. 
  

 
Then, plugging in the values T = 365.25 (the period of the Earth) and t = 212, we get 

 
M ≈ 3.6469 radians. 

 
Because M = E – e sin E (22), 

 
E – e sin E ≈ 3.6469 radians. 

 
The value of the constant e, the eccentricity of the orbit of the Earth, is 0.0167. 
 

E – (0.0167) sin E ≈ 3.6469 radians 
 
Using a graphing calculator, or using mathematical manipulation, we find that 
 

E ≈ 3.6389 radians. 
 

Using the previously determined equation (21) cos E = 
θ
θ

cose1
 cos  e

+
+ , we find cos E = cos 

(3.6389… radians), and 
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θ
θ

cose1
 cos  e  8788.0

+
+

≈− . 

 
Let α = -0.8788. We find 

α = 
θ
θ

cose1
 cos  e

+
+ . 

 
Using algebraic manipulation, we get 
 

cos θ = 
e*-1

e-
α
α . 

 
Substituting back in α and e, we get 
 

cos θ ≈ -0.8826, 
 

θ ≈ 2.6521 radians ≈ 208.0430 degrees. 
           

Thus, the angle of the Earth in relation to its point at its perihelion is approximately 28.0430 
degrees past 180 degrees, or about 208.0430 degrees. 
 
PART III: SPHERICAL TRIGONOMETRY 
  
To determine the location of the planets in reference to the night sky, it is necessary to derive 
functions that work for spherical triangles, since we assume for simplicity that the planets travel 
on a celestial sphere.  
 
Law of Cosines 

 
Three intersecting arcs of 

distinct great circles form a spherical 
triangle. Sides are given by angles 
rather than lengths. Each angle of a 
spherical triangle is defined as the 
angle between the lines tangent to the 
arc at the vertex of the spherical 
triangle (Fig. 9). To translate these 
shapes to a Euclidean system, we 
project the spherical triangles to a 
plane. We start with triangle ABC on 
a sphere of radius R (Fig. 9). To 
project the spherical triangle, we 

place the sphere tangent to a plane at C. 

  Fig. 9: The points of a spherical 
triangle projected on a plane. 
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We draw a radius from point O 

to point C. The radii through points A 
and B are then extended onto the plane 
on which the sphere rests to points A’ 
and B’, respectively. Points A’, B’, and 
C form a projected triangle on the plane. 
The planar triangle is the base of 
tetrahedron A’B’CO (Fig. 3.2). Since 
B’C and A’C are the tangent lines to arcs b and a, 
respectively, the angle BCA on the spherical 
triangle is the same as angle B’CA’ on the planar 
triangle. For face B’OC, we apply the Law of Sines,  

Fig. 10: The law of cosines is applied 
to the new polar variables. 

 

BOaRBO
a

R ′=⇒
′

=
−

)sec(
)2/sin()2/sin( ππ

 

 
From this, we get 

)tan()tan( aRCB
R
CBa =′⇒
′

= . 

We then carry out an analogous process on triangle A’OC and get OA’ = R sec(b) and A’C = R 
tan(b). To find side B’A’, we use the Law of Cosines first on triangle B’CA’, and then on 
triangle B’OA’: 
 

))(cos())tan(())tan((2))tan(())tan(()''( 222 CbRaRbRaRAB ⋅⋅⋅−+=  
))(cos())sec(())sec((2))sec(())sec(()''( 222 cbRaRbRaRAB ⋅⋅⋅−+=  

This implies: 
)cos()tan()tan(2)(tan)(tan)cos()sec()sec(2)(sec)(sec 2222 Cbabacbaba ⋅⋅⋅−+=⋅⋅⋅−+  

Using algebra, we get 
)cos()tan()tan()cos()sec()sec(22 cbacba ⋅⋅=⋅⋅⋅−  

And finally 
)cos()sin()sin()cos()cos()cos( Cbabac ⋅⋅+⋅= .   (24) 

 
Law of Sines 
 
Starting with the Law of Cosines, 

 
)cos()sin()sin()cos()cos()cos( Cbabac ⋅⋅+⋅= , 

 
We isolate the angle that we are looking for (C) 

)sin()sin(
)cos()cos()cos()cos(

ba
bacC

⋅
⋅−

= . 

We then substitute in for cosine: 
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)sin()sin(
)cos()cos()cos()(sin1 2
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bacC

⋅
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Then we apply some algebra and get 
 

)(sin)(sin
)(cos)(cos)cos()cos()cos(2)(cos)(sin)(sin)(sin 22

22222
2
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⋅
⋅−⋅⋅⋅+−⋅

= . 

 
Substituting (1-sin2(x)) for all cos2(x) we get 
 

)cos()cos()cos(2)(sin)(sin)(sin)(sin)(sin)(sin 222222 cbabacbaC ⋅⋅⋅+++=⋅⋅ . 
 
We recognize that the right side of the equation remains constant regardless of whether we 
perform this process for angle A, B, or C. Therefore, we equate the following and get 
 

)(sin)(sin)(sin)(sin)(sin)(sin)(sin)(sin)(sin 222222222 bcAcaBbaC ⋅⋅=⋅⋅=⋅⋅ . 
 
 From this we obtain the following as a Law of Sines for spherical triangles: 
 

)sin(
)sin(

)sin(
)sin(

)sin(
)sin(

a
A

b
B

c
C

== . 

 
Finding the position of objects in the celestial sphere 
 

00hh

ε = 23.5° 

λλ  (α, δ) 
θθ  

α = 0h

δ = 0° 

α = 12h

δ = 0° 

α = 6h

δ = 23.5° 

Fig 11: The sun is defined by (α, δ) on the celestial sphere. 

Using the Law of Sines and the Law of Cosines we derived for spherical trigonometry, 
we are able to find the position of a certain object, such as the sun, as seen from the Earth. In our 
model, we visualize a celestial sphere with the Earth at its center as the sun revolves around the 
planet (Fig. 3.3).  
 
The celestial sphere has defined northern 
and southern poles, as well as a celestial 
equator. This equator is a great circle, one 
whose diameter is the same as that of the 
sphere and is formed when a plane 
intersects the sphere through its center.  
The path on which the sun travels, the 
ecliptic, is also depicted in the figure. 
Objects seen on the celestial sphere from 
Earth are located on a coordinate system 
that utilizes right ascension (latitude, 
represented by α,) and declination 
(longitude, symbolized by δ.)        
 
The range of α is from 0 to 24 hours, and δ 
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is between 
2
π

−  and 
2
π  radians.  Using these units, one hour can be expressed as 15° (360°/24).  

We further define ε to be the tilt of the earth’s axis from the equator. A line connecting the North 
Celestial Pole and the South Celestial Pole is drawn on the celestial sphere, indicating where 
time equals 0 hours. This meridian is analogous to the imaginary line running through 
Greenwich, England on the globe. If the sun is positioned where this meridian intersects with the 
ecliptic, its right ascension and declination are both 0. At the time of the summer solstice, the sun 
has traveled one quarter of its path around the Earth and δ = ε = 23.5°. The distance on the 
ecliptic from the “origin” (α = 0, δ = 0) over which the sun has traveled is labeled λ. As the sun 
journeys around the planet, its right ascension and declination will constantly be changing. Our 
objective was to find the position of the sun (α, δ) at any given time. 
 
     A ninety-degree angle is formed when the line where α = 0 and δ = 0 intersect with the 
celestial equator.  If we apply the Law of Sines for spherical trigonometry to a triangle with one 
vertex at (0, 0), another on the celestial equator, and the last vertex indicating the position of the 
sun, then we get  

ε
δλ

sin
sin

90sin
sin

=
°

.   

 
This statement can be simplified to yield the equation sin δ = sin λ sin ε.  Finally, we see that 
        

δ = Arcsin (sin λ sin ε), 
 
showing that the declination of the sun can be found using given values for λ and ε. 
 
The right ascension of the sun can also be obtained by applying the spherical Law of Cosines, 

cos c = cos a cos b + sin a sin b cos C, 
 

to the same triangle used to find δ.  By substituting in variables, we find 

cos λ = cosα cosδ + sinα sinδ cos
2
π , 

cos λ = cosα cosδ  ⇒   cos2 λ = cos2 α (1 – sin2 δ). 
 
Using the earlier equation sin δ = sinλ sinε, we derive 
 

cos2 λ = cos2 α (1 – sin2 λ sin2 ε), 

cos2 α = 
ελ

λ
22

2

sinsin1
cos

−
. 

We finally determine that 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
=

πελ

λα 12
sinsin1

cosarccos
22

, 

 
and we can conclude that the right ascension of the sun can also be obtained if λ and ε are given .  
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Spherical triangles can be 

used to determine how long the sun 
is above the horizon at a given 
latitude. The horizon depends on the 
latitude of one’s position on Earth.  
As the earth’s radius is negligible 
when compared with the celestial 
sphere, we view the earth as a point. 
The horizon is defined as a plane 
passing through the point with its 
slope determined as relating angle φ, 
 angle between the line 

perpendicular to the horizon and the equator. 

Fig. 12: The celestial sphere with circular 
planes for the horizon, equator, and sun. 

the latitude of the earth. This is represented on Fig. 12 as the

 
     Define plane H as the plane passing horizontally through the celestial sphere. Crossing this 
great circle are two parallel circles on the celestial sphere. The equator is projected onto the 
celestial sphere and named plane E, while the other circle depicts the path of the sun on the 
celestial sphere at a given latitude, named plane S. The arc between these two parallel circles is 
defined as δ. The angle and arc length between the equator circle and the horizon is (π/2-φ). The 
point Z is defined as the intersection of the line perpendicular to the horizon emerging from the 
center of that circle and the celestial sphere. The north celestial pole (NCP) is similarly defined 
as the intersection of the line perpendicular to the equator circle emerging from the center of that 
circle and the celestial sphere. 
 
     From Fig. 3.4, we can find the amount of time the sun spends above the horizon in one day. 
This value can be calculated from the ratio of the circumference of great circle S above plane H 
to the total circumference. To accomplish this, first consider point A on plane H, where the sun’s 
path crosses the horizon. Because the great circle containing Z is perpendicular to H at point A, 
arc AZ has the length π/2. Joining point N with A produces a side of length (π/2-δ) that connects 
arc δ with the point perpendicular to horizon. As the angle between the horizon and the NCP is φ, 
the angle between point N and Z is (π/2-φ). Finally, we must determine the measure of angle H 
in Fig. 3.4, formed by the sides AN and NZ. First, we can connect point N and plane E with two 
arcs of length π/2. The first will pass through point A, while the second will pass through point Z. 
We can define point B as the intersection of the arc containing point Z and plane S. 
      
     Recalling the original question, consider the side lengths AB and DF, as well as angle H. 
Because DF lies on a great circle, and angle H is on the line perpendicular to the center of plane 
E, the side length of DF corresponds to angle H. Since both the side lengths and angle measures 
are in degrees, we recognize that the angle measure of DF will equal that of AB. Since AB 
represents only one-half of the sun’s path over the horizon during one day, (AB/180)24 will 
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equal the total number of hours the sun spends above ground in one full day. To find this value, 
we use the spherical trigonometric Law of Cosines (27), with angle H being equal to length AB. 
We get 
 

)()2/()2/()2/()2/()/2( ABCosSinSinCosCosCos ⋅−⋅−+−⋅−= ϕπδπϕπδππ . 
 
Using basic trigonometric identities, we determine that 
 

)()()()()(0 ABCosCosCosSinSin ⋅⋅+⋅= ϕδϕδ . 
 
This provides the final answer, expressed in radians. We get 
 

))()(cos( ϕδ TanTanArcAB ⋅−= . 
 
The number of hours spent by the sun above the horizon can therefore be defined as: 
 

))()(cos()15/2( ϕδ TanTanArcHours ⋅−⋅= . 
 
PART IV: THE SUNDIAL 

 
 
 
 
 
 
 
 
 
 
 

 
 
Since the focus of the project was to understand the complexities of celestial motion, a 

small group of us derived the necessary angles, and set out to make a sundial. Sundials use an 
object aligned at a specific angle to cast a shadow on the ground. The position of the shadow 
relative to the object casting the shadow is used to represent time. Fig. 13 is the reference frame 
used initially. This reference frame was chosen because the points used can be represented in one 
or two dimensions. The vector L describes the distance from the ground to the top of the object, 
and the point P represents the point where the sun is (Fig. 14). 

Fig. 14: Vector L 
is applied to the 
reference frame. 

Fig. 13: The initial 
reference frame. 

 
Currently, we are in daylight savings time, which differs from “sun time” (or actual time) 

by one hour.  Therefore, when the sun is at the 11:00 position in the sky, clocks in daylight 
savings time read 12:00.  The point at which the sun is in the 11:00 position will be represented 
by the point P. 
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Fig. 15: The new coordinate system. Assuming that the earth rotates uniformly, 
the sun should move uniformly across the sky 
relative to the earth.  Since there are 24 hours in a 
day and 360 degrees in a circle, each hour, the sun 
should move 15 degrees along its path in the sky.  
We then proceeded to determine the location of 
the points chosen relative to the reference frame 
selected.  Using simple trigonometric functions, 
we can now easily determine the positions of the 
points P and L. 

 
 
L = <0, 0, L> (Fig. 14) 
P = <-r*sin(15), r*cos(15), 0> (Fig. 14) 
 

Now that we have these coordinates, rotate the frame of reference around the X axis by Φ 
degrees, the angle to rotate the Y and Z axes, such that the X’ and Y’ axes form a coordinate 
plane on the surface of the earth (Fig. 15) Thus, we can find new coordinates <X’,Y’,Z’> for L 
and P in relation to the earth’s surface, with X = X’. 

 
Considering X = X’, now solve for the points P and L in two dimensions. Under the new 

coordinate system, P = <-rsin(15), rcos(15)sin(Φ), rcos(15)cos(Φ)>, and L = <0, -Lcos(Φ), 
Lsin(Φ)>.  Using the standard form of a line for three dimensions, tvrr vv += with Lr =  and 

, we get  )( LPv −=v

 
tLrLrrLLor >−+−<+>−=< )sincos15cos(),cossin15cos(,15sinsin,cos, φφφφφφv . 

 
With that said, we now can solve for the original goal. Light from the sun will be emitted 

from point P and cross the tip of L, and hit the ground (Z’= 0), forming a shadow at an angle θ  
with respect to Y’.  Since at 12:00, θ =0, at other time points, θ  is equal to the angle that the 

shadow makes with the 12:00 line.  Using that 
data, it is possible to construct the clock. We 
solved for θ . 

 
Using the equation of the line formed 

between the points P and L, we can easily solve 
for the point at which the line hits the ground (Z’= 
0). Once we know that point, we would be able to 
solve for θ  using the tangent function. The 
general equation for the different components of a 
line in three dimensions is as follows: 
 

tvzz
tvyy

tvxx

30

20

10

+=
+=
+=

Fig. 16: Light hits the ground at point L. 
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We know that since Z’=0, z =0, so we can solve for t when z =0 like so: 

φφ
φ

φφφ

sincos15cos
sin

)sincos15cos(sin0

Lr
Lt

tLrL

−
−

=

−+=

 
Now that we have t when , we can get the other components of that point.  

Since

0=z

a
o

=θtan ,
Y
X

=θtan .  With that information, we then solve for θtan  as follows: 

 

sing that equation (28), we now obtain values of θ for positions of the sun other than 15 
degrees

φθ
φφ

φθ

φφφφφ
φθ

φφ
φφφφ

φφ
φ

θ

sin15tantan
)cos(sin15cos

sin15sintan

sincossin15cos)sin15cos(cos
sin15sintan

sincos15cos
sin)cossin15cos(cos

sincos15cos
)sin(15sin

tan

22

22

=
+

=

++−
=

−
−

++−

−
−−

=

Lr
Lr

LLrLrL
Lr

Lr
LLrL

Lr
Lr

(25) 
 
U
.  To figure out the other positions of the sun, we just substituted in 30 for 10:00/2:00, 45 

for 9:00/3:00, and 60 for 8:00/4:00.  As stated earlier, =φ the degree of latitude that the sundial 
is at.  With all that information, we were ready to go out to the field and put our predictions to 
practicality. 
 
Building the Sundial 

We found a reference line (the 12:00 PM line for the clock) the following day using a 
long po

at 

ents 

te 

 

le that we made perpendicular to the ideal earth’s surface (a perfect sphere). The 
reference line is the line created by the shadow formed by a pole perpendicular to the 
12:00 sun time (1:00 PM). Using string and nails, we marked this line. We calculated the 
necessary angles using equation (28). Using the tan function and simple distance measurem
along the reference line, we mapped out the angles we calculated and used nails and string to 
mark them. We used a board to hold the pole casting the shadow at 41 degrees, the approxima
value for our degree of latitude. The reason the pole is at a slant is to account for our position on 
the earth in relation to the equator, such that the sun’s rays hit the pole perpendicularly. We then 
checked our sundial against the sun and found that we had the correct time, and spray painted the 
final product onto the ground, removing the strings of the original dial. 
 

earth 
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CONCLUSION 

Studying the laws of celestial mechanics requires the integration of physics, geometry, 
trigono e 

 the 

 

d 

ur next step would have been to determine the locations of the planets, both along their 
orbit an

tists 

hat 

 

side from the wider affects of this work, the fact remains that the project as a whole 
went qu

 of 

 

metry, calculus, and astronomy. Using our collective knowledge of these related fields w
derived the original equations of Johannes Kepler in order to better understand planetary motion. 
The information required divided our team into three primary areas; the first group tackled 
Kepler’s primary works and succeeded in deriving his three laws, the second group explored
patterns and equations associated with the geometry of ellipses and simplified them for more 
practical applications, and the third group transferred their knowledge of triangles to spherical
trigonometry which more accurately depicts the night sky as viewed from Earth. Then coming 
together, we provided a more coherent view of celestial mechanics. The study of ellipses create
equations that, with Kepler’s Laws, allowed the group to characterize any planet’s motion as a 
constant. This could be applied to find a planet’s position with respect to the sun. The spherical 
trigonometry group could then take this information and place each planet in the night sky for 
our observation. Our team then derived the equations and measurements associated with a 
sundial by studying how the sun moves across the sky and then constructing a working model. 

 
O
d in the sky. We could have then tested these results through the Drew University 

observatory. Today, the discoveries that we made in team project are used by astronomers 
everywhere to predict the motions of the heavenly bodies. In a recent mission, NASA scien
were able to accurately predict the motion of a distant comet and hit it with an impact probe 
launched from Earth, no doubt using some form of Kepler’s Laws and the related equations t
we discovered in the classroom. Thus, the practical importance of our work in this team project 
is unquestionable and will surely continue to serve society as we to look to the sky with wonder.

 
A
ite smoothly. The fact that it was rarely necessary to ask for help in the derivation of 

some of the most important formulas in basic astronomy is a credit to the talent and hard work
this team. Regardless of the age of these formulas, this project on the whole was an 
overwhelming success.  
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