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ABSTRACT 
 
 The goal of this project was to explore the mechanics of the heavenly bodies – the Sun, 
the planets, and the stars. To do this, Kepler’s Laws of Planetary Motion were derived through 
the use of Newton’s Laws of motion, and analysis of elliptical geometry yielded mathematical 
solutions to the orbital paths of the planets. Spherical triangles were used to analyze the celestial 
sphere and to ultimately analyze the motion of the other heavenly bodies in this sphere with 
respect to a stationary observer. Ultimately, a model was created that could determine the 
location of a planet on any given day, and a further geometrical analysis allowed for the 
construction of a working sundial, which could tell time to a reasonable degree of accuracy. The 
work done on the project provided a practical application of Kepler’s Laws and both planar and 
spherical geometry, and led to a better understanding of the workings of motion as related to the 
celestial sphere. 
 
INTRODUCTION 
 
 Since the earliest civilizations, humans have been intrigued by the strange workings of 
the heavens above. Over the millennia, the planets have been used to predict the weather, to 
determine one's personality, and even to represent the gods. The great power that was ascribed to 
the planets seemed to be a representation of the mystery they held for us, for nobody truly 
understood just how these bodies moved about the sky. In an effort to explain the movements of 
the heavens, such thinkers as Aristotle, Ptolemy, and Copernicus introduced their theories.  
Though these theories gradually improved our understanding of the universe, their predictions 
were not completely consistent with observation. This state of affairs was revolutionized by 
Johannes Kepler in the early 1600s. After studying the observations of astronomer Tycho Brahe, 
Kepler introduced his three laws of planetary motion, which for the first time accurately 
explained the motions of celestial bodies. In this project we explored Kepler's Laws and their 
applications in locating celestial bodies in the sky. 
 
PART I: THE GEOMETRY OF THE ELLIPSE 
 
 As planets orbit the sun, their paths follow elliptical curves. Planetary motion is closely 
intertwined with the geometry of the ellipse. As such, we want to study the equations associated 
with the ellipse to gain a better understanding of the curve. This will eventually help us to 
accomplish the task of tracking planetary motion. 
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The Polar Form of the Ellipse 
 

We want to be able to find the distance from the Earth to the sun at any time. Therefore, 
we want to find the equation of an ellipse as a function of polar coordinates. As we will show 
later, for all planets, the sun lies at a focus on an elliptical orbit. Therefore, we are first interested 
in translating the ellipse such that a focus (and thus the sun) lies at the origin of a Cartesian 
plane. The formula for an ellipse centered at point (h,k) in rectangular coordinates is 

2 2

2 2

( ) ( ) 1x h y k
a b
− −

+ =  

where a is the length of the semi-major axis, b is the length of the semi-minor axis, and a > b. 
An ellipse with a focus at the origin is 
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a b
+

+ =                                                            (1) 

where c is the distance from the origin to a focus of the ellipse. This models a planetary orbit 
with the sun at the origin. If we convert this equation to a function of polar coordinates, we will 
obtain a function that relates r, a planet’s distance from the sun, with θ, the angle that the planet 
makes with the sun and the x-axis. We use polar coordinate definitions to convert (1) to polar 
form. 
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a b
θ θ+

+ =                                                    (2) 

In any ellipse, it is given that 
c ea=  and 2 2 2b a c= −             (3) 

where e is defined as the eccentricity of the ellipse. Eccentricity is a measure of how much a 
conic section deviates from a circle. Values of e range from 0 to 1; when e = 0, the ellipse is a 
perfect circle and when e = 1, the ellipse is a line segment. For Earth, e = 0.0167 [1]. Using (3) to 
rewrite (2) yields 
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We can now solve for r by using the quadratic formula: 
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                                                          (4) 

Manipulating the equations from (3) gives 
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2

1 1
1

1

a a
b a c ec

a

= = =
− −⎛ ⎞

− ⎜ ⎟
⎝ ⎠

                                                 (5) 

We simplify the complex fraction in (4), substituting in the equation from (5). Additionally, in 
polar form, r represents a distance from the origin, so we may eliminate the negative solution. 

2(1 )
1 cos
a er

e θ
−

=
+

                                                              (6) 

Therefore, (6) is the equation of an ellipse with a focus at the origin written as a function of polar 
coordinates. 
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Fig. 1: Position of a planet with respect to the Sun 
in rectangular coordinates. 

PART II: KEPLER’S LAWS 
 
 We will now prove Kepler’s Laws, which serve as the basis for celestial mechanics 
because they describe the orbits of the planets. When Kepler published his three laws of 
planetary motion, his research was based off of careful and arduous observations.  The 
mathematics and physics required to prove his laws were not available to Kepler, and a formal 
proof of his laws would not appear until Isaac Newton dictated his laws of motion and invented 
what we now know as calculus.  Here, we will provide a proof for Kepler's revolutionary ideas. 

 
Kepler’s three laws can be obtained from Newton’s laws and the gravitational force equation: 

= mF a  

2

-GMm=
rGF  

 
Kepler’s First Law  
 

We begin by proving 
Kepler’s First Law, which states 
that the orbit of a planet can be 
described as an ellipse with the 
Sun at a focus. Therefore, we want 
to show that the orbit of a planet 
can be written as the polar equation 
in (6). 
 For the basis of our 
derivation, we assume that 
Newton’s Second Law of Motion 
and Law of Gravitation are true. 
Combining the two laws, we 
obtain: 
 

2= cosGMmm
r

θ−
=x xF a                                                      (7) 

2= sinGMmm
r

θ−
=y yF a                                                      (8) 

Note that acceleration is written as the second derivative of position with respect to time.  From 
Figure 1, we see that the position of planet can be written in polar form where x = r cos θ and y = 
sin θ.  The second derivatives of x and y can be used to replace ax and ay. 

2 2 2
2

2 2 2[( ) cos sin ] - 2 sin cosd x dθ d θ dr dθ d r= -r θ+ θ θ+ θ
dt dt dt dt dt dt

                          (9) 

2 2 2
2

2 2 2[( ) sin cos ] + 2 cos sind y dθ d θ dr dθ d r= -r θ - θ θ+ θ
dt dt dt dt dt dt

                        (10) 

We then substitute the second derivatives (9) and (10) into (7) and (8), respectively 
2 2

2
2 2cos [( ) cos sin ] - 2 sin cos2

-GM dθ d θ dr dθ d r= -r θ+ θ θ+ θ
r dt dt dt dt dt

θ                    (11) 

θ
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2 2
2

2 2sin [( ) sin cos ] + 2 cos sin2

-GM dθ d θ dr dθ d r= -r θ - θ θ+ θ
r dt dt dt dt dt

θ                    (12) 

To simplify, we multiply (11) by sin θ and (12) by cos θ. Subtracting the resulting equations 
yields: 

2

20 2d dr dr
dt dt dt
θ θ

= +         (13) 

Multiplying (11) by sin θ and (12) by cos θ and adding the resulting equations yields: 
2

2
2)2

-GM dθ d r= -r( +
r dt dt

         (14) 

Next, we integrate (13) and call the constant of integration h. 
2 dθh = r

dt
                                                               (15) 

We substitute this constant into (14). 
2 2

2 3 2

-GM -h d r= +
r r dt

                                                       (16) 

We want to determine a value of 
2

2

d r
dt

 to substitute into (16).  Define some u such that 1r =
u

.  

The chain rule is used to calculate 
2

2

d r
dt

 

2 2

1dr dr du dθ du h du= = - = -h
dt du dθ dt u dθ r dθ

 

2 2
2 2

2 2[ ( )]d r d d du dθ d u= -h = -h u
dt dt d dθ dt dθθ

                                        (17) 

Substituting (17) into (16) allows gravitational acceleration to be expressed in terms of u and θ 
2

2 2

-GM d u= u+
h dθ

                                                         (18) 

We then integrate (18) and solve for r, which yields 
2

2

cos sin

h
GMr =

h1+ (A θ+ B θ)
GM

                                                (19) 

where A and B are constants of integration. We want r to be at a minimum when the planet lies 
on the positive x-axis. Thus, we want r to be at its minimum when θ = 0. This implies that B = 0. 

We use 
2Ahe =

GM
 and substitute this value into (19). This e is the eccentricity of a planet’s 

elliptical orbit. 

1 cos

e
Ar =

+e θ

⎛ ⎞
⎜ ⎟
⎝ ⎠                                                             (20)
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The cosine function in the denominator in (20) translates into a periodic function, with a 
maximum and a minimum.  We will determine the sum of the maximum and the minimum 
values of r and let it equal 2a. 

min max 2
1 cos 1- cos

e e
A Ar r a

+e θ e θ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+ = + =    

1 2e = a( - e )
A

                                                             (21) 

Substituting (21) into (19) yields  
1

1

2a( - e)r =
+ecosθ  

Note that this is the same as the polar equation of an ellipse that we found in (6).
 

 
Kepler’s Second Law 
 

Kepler’s Second Law states that the area of a sector swept out by a line segment from the 
Sun is equal for an equal time interval. To begin our proof, we define some variable A to be the 
area of a sector of an ellipse swept out an equal time interval, t. We want to prove that this area 

changes at a constant rate; that is, that dA
dt

 is a constant. The area of any given sector of an 

ellipse in polar coordinates can be calculated as 1
2

β 2

α
A= r dθ∫ . Therefore,  

1
2

2dA= r dθ                           (22) 

To obtain dA
dt

, we use the chain rule, substituting in (22) and (15). 

dA dA dθ h= =
dt dθ dt 2

      (23) 

As stated in (15), h is a constant, and therefore 
2
h  and dA

dt
 are constant. The planets sweep out 

equal areas in equal amounts of time, thus proving Kepler’s Second Law. 
 
Kepler’s Third Law  
 

Kepler’s Third Law states that the square of the period of a planet’s orbit is proportional 

to the cube of its semi-major axis. The objective of this proof is to show that 
2

3

T
a

 is a constant. 

We first integrate (19) with respect to t to obtain the area of the ellipse. 

2 2
T

0

h hTA= dt = = πab∫                                                    (24) 

Area of an ellipse in the Cartesian plane can also be calculated with the equation A= πab , where 
a is the semi-major axis and b is the semi-minor axis. Also true for ellipses are 2 2c = a -b  and 
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Fig. 2: Circle circumscribed about an 
ellipse. 

ce =
a

.  Using the latter two properties of ellipses, we find that 2b = a 1- e . We substitute b into 

(24). 
2

2
2hT = πa 1- e                 (25) 

We use (21) and 
2Ahe =

GM
 to solve for  

21h = GMa( - e )       (26) 
We substitute this value of h into (25).  

2
2 2

2
T GMa(1- e )

= πa 1- e  

Manipulating the latter result will lead to Kepler’s Third Law. 
2 2

3
4=

a
T π

GM
 

 
PART III: ELLIPTICAL MOTION 
 
Relating an Ellipse to Its Circumscribed Circle 
 

We have determined an equation 
defining a planet’s orbit along an ellipse. 
Eventually, we would like to be able to find 
the angle θ at any time t. This, however, 
presents a problem, as θ does not change at a 
constant rate. The speed of a planet depends 
upon its distance from the sun. Therefore, we 
want to relate θ to some value that changes at a 
constant rate. To do this, we begin by 
translating an ellipse back to its original 
position, centered at the origin. 
 
We circumscribe a circle around the ellipse. 
For any point P on the ellipse, we define the 
corresponding point P’ to be the point on the 
circle that lies on the line perpendicular to the 
x-axis through point P. Angle E is the angle in 
standard position such that E’s terminal side is 
the ray connecting the origin to point P’. The 
distance from the origin to point P’ is the circle’s 
radius, which is also the ellipse’s semi-major axis. Thus, the distance from the origin to point P’ 
is a (Fig. 1). We want to find some function relating E and θ.  
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Through the use of trigonometry, we find that 
cos
cos

a E x
r x cθ

=
= −

 

cos cosa E r aeθ= +                                                          (27) 
In Fig. 1, r and θ are related by the same function as in (6), because (6) was derived from a 
translated ellipse with a focus at the origin. Therefore, we can substitute r in (27) with our polar 
function from (6). 

2(1 )cos cos
1 cos
a ea E ae

e
θ

θ
−

= ⋅ +
+

 

coscos
1 cos

eE
e
θ

θ
+

=
+

                                                           (28) 

We know that for any angle α, the following trigonometric identity holds true: 
2

2

1 tan
2cos

1 tan
2

α

α
α

⎛ ⎞− ⎜ ⎟
⎝ ⎠=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 

Applying this identity to (28) gives us 
2 21tan tan

2 1 2
E e

e
θ−⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 

1tan tan
2 1 2
E e

e
θ−⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

                                                    (29) 

We now have obtained an equation relating θ and E. We are still unable find angle θ at any time 
t. However, E will play an important role in relating θ and t. 
 
Kepler’s Laws Applied to Elliptical Geometry 
 

We still seek to find a way to relate the angle θ that a planet makes with its sun to time t. 
To do this, we define some quantity M such that M = E – e sin E, where e is the eccentricity of a 
planet’s orbit. We want to show that M’s rate of change is constant. If we can show that M’s rate 
of change is constant, we can calculate M at any time t, calculate E for any M, and calculate θ for 
any E. Thus, if we show that M’s rate of change is constant, we can find angle θ at any time t. 
 
The rate of change of M is given by its derivative with respect to time: 

 (1 cos )dM dE e E
dt dt

= ⋅ −                                                      (30) 

We need to equate dE
dt

. We can do this by taking the derivative of (29) with respect to time. 

2

2

sec
1 2
1 sec

2

dE e d
Edt e dt

θ
θ

⎛ ⎞
⎜ ⎟− ⎝ ⎠= ⋅ ⋅

+ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Substituting in d
dt
θ  from (15) yields 
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2

2
2

sec ( )1 2
1 sec ( )

2

dE e h
Edt e r

θ
−

= ⋅ ⋅
+

 

Substituting in the value of r from our polar function (6) yields 

   
2

2

2 2 2
2

sec ( )1 (1 cos )2
1 (1 )sec ( )

2

dE e eh Edt e a e

θ
θ− +

= ⋅ ⋅ ⋅
+ −

                                          (31) 

We can then substitute (32) into (31), which gives us 
2

2

2 2 2
2

sec ( )1 (1 cos )2 (1 cos )
1 (1 )sec ( )

2

dM e eh e EEdt e a e

θ
θ− +

= ⋅ ⋅ ⋅ ⋅ −
+ −

                               (32) 

We know that for any angle β, the following trigonometric identity holds true: 

2
cos1)

2
cos( ββ +

±=  

Manipulating this identity yields 
2 2sec ( )

2 1 cos
β

β
=

+
                                                        (33) 

We substitute (34) into (33) 
2

2 2 2

1 1 cos (1 cos ) (1 cos )
1 1 cos (1 )

dM e E eh e E
dt e a e

θ
θ

− + +
= ⋅ ⋅ ⋅ ⋅ −

+ + −
                          (34) 

We can use (28) to substitute for cos E in (35) to obtain 

2

2 2 2

cos11 (1 cos ) cos1 cos (1 )
1 1 cos (1 ) 1 cos

e
dM e e eeh e
dt e a e e

θ
θ θθ

θ θ

++− + ++= ⋅ ⋅ ⋅ ⋅ − ⋅
+ + − +

 

2 2

2 2 2

1 1 cos cos (1 cos ) 1( )
1 1 cos (1 ) 1 cos

dM e e e e eh
dt e a e e

θ θ θ
θ θ

− + + + + −
= ⋅ ⋅ ⋅ ⋅

+ + − +
 

2

1 1
1 (1 )

dM eh
dt e a e

−
= ⋅ ⋅

+ −
                                                 (35) 

Substituting the value of h from (26) into (36) yields 

)1(
1

1
1)1( 2

2

eae
eeaGM

dt
dM

−
⋅

+
−

⋅−=  

2
3

a

GM
dt

dM
=                                                             (36) 

Kepler’s Third Law of planetary motion states that 
2 2

3

4T
a GM

π
=  
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3
2

2
Ta GM
π

=                                                            (37) 

Substituting (38) into (37) yields 
2dM

dt T
π

=  

Recall that T is a constant representing the period of a planet’s orbit. Therefore, dM
dt

 is a 

constant, which means that M’s rate of change is constant. We can integrate dM
dt

 to give us an 

equation that expresses M in terms of time t 
2dM

dt T
π

=∫ ∫  

2 tM C
T
π

= +  

where C is the constant of integration. At time t=0, angle E=0. Therefore, at time t = 0, C = 0.  
We conclude that 

2 tM
T
π

=                                                                (38) 

where T is the period of a planet’s orbit, and t is the amount of time since a planet’s perihelion, 
the closest approach of a planet to its sun. Earth’s perihelion in 2006 was on Jan. 3, 2006 15:30 
GMT [2]. Earth’s distance from the sun at perihelion was 91,405,436 miles [3]. For any planet 
for which we know the period of orbit, we can find M at any time t after perihelion. This means 
that at for any time t, we are able to calculate the angle θ and the distance from the sun, r. 
 
PART IV: SPHERICAL TRIGONOMETRY 

 
 Spherical trigonometry studies the triangles 
formed by connecting three points on the surface of 
a sphere. The arcs that create the sides of the 
triangles are arcs that lie on the sphere’s great 
circles, circles that have the same center as the 
given sphere.  
 
Figure 3 is the construction of spherical triangle 
ABC on the surface of a sphere with center O. 
Points A, B, and C that form the spherical triangle 
ABC1 have sides a, b, and c. C on the sphere is also 
tangent to the plane. Three lines are extended from 
O through each point, A, B, C, until they intersect 
with the plane perpendicular to the sphere's bottom. 
These points A', B', and C are connected on the 

plane perpendicular to the                sphere to form a planar triangle A'B'C with sides                             
                                                              a', b', and c'. 
 
 

Fig. 3: Points A, B, C projected from 
center of sphere, O, onto the plane 
perpendicular to the sphere. 
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The Spherical Law of Cosines 
 
 Starting with the given 
quantities r (radius); angles A, B, 
and C; and sides a, b, and c, we 
began to derive the spherical Law 
of Cosines from the planar Law of 
Cosines: 

2 2 2 2 cosc a b ab C= + −  
We began by finding pieces of the 
planar triangle via the given 
quantities in the spherical 
triangle.  
  
First we redefined the angles 
using the equation for an arc, 

S rθ=  
 

where S is the arc length, r is the 
radius, and θ is the angle opposite the arc. From this we obtained angle A’OC in terms of b and r 
and angle B’OC in terms of a and r. 

' bA OC
r

=  

' aB OC
r

=  

The tangent of right triangles A’OC and B’OC were utilized to define sides a’ and b’: 

' tan aa r
r

=  

' tan bb r
r

=  

The law of cosines for A’B’C was written in terms of the givens by substituting the new values 
for a’ and b’ that were previously found. 

2 2 2' ' ' 2 ' 'cosc a b a b C= + −  
2 2 2' ( tan ) ( tan ) 2( tan )( tan )cosa b a bc r r r r C

r r r r
= + −                             (40) 

After finding the first equation for c’, we needed to derive a different equation for c’  
in order to equate them and find a Law of Cosines for a spherical triangle. We did this using the 
frontal triangle A’OB’ in the open triangular pyramid. By using right triangles A’OC and B’OC, 
the Pythagorean theorem was applied to solve for sides OB’ and OA’ in terms of the given 
quantities. 

2 2 2 2( ') tan bOA r r
r

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

2 2 2 2( ') tan aOB r r
r

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

Fig. 4: Planar triangle A’B’C with each point 
extended to the origin to create an open triangular 
pyramid. 
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These new values were plugged into the planar Law of Cosines: 

2 2 2 2 2 2 2 2 2 2 2 2 2' tan tan 2cos tan tana b c a bc r r r r r r r r
r r r r r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

And it was algebraically manipulated to simplified form: 
2 2 2 2' 2 tan tan 2sec sec cosa b a b cc r

r r r r r
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

                                (41) 

The two equations for c’ in the Law of Cosines, (40) and (41), were equated. Finally, after a 
series of manipulations, a new Law of Cosines was found that could be applied to spheres: 

cos cos cos sin sin cosc a b a b C
r r r r r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                                        (42) 

 
The Spherical Law of Sines 
 
 After deriving a spherical Law of Cosines, we set out to use this new law to find a Law of 
Sines for spherical triangles.  
 
We began by squaring the spherical Law of Cosines in equation (42). All of the squared cosines 
were able to be converted into squared sines using the following trigonometric identity  
     2 2cos 1 sinθ θ= −            (43) 
to yield 

2 2 2 2 2 2 2

2

2 2

sin sin 1 sin 2cos cos cos 1 sin sin sin sin
sin

sin sin

a b c a b c a b a b
r r r r r r r r r rC

a b
r r

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Through algebraic manipulation and division by 2sin c
r

, a law of sines for spherical triangles was 

determined: 
2 2 2

2

2 2 2 2

sin sin sin 2cos cos cos 2
sin

sin sin sin sin

a b c a b c
C r r r r r r
c a b c
r r r r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
This new equation for the spherical Law of Sines is a symmetric function, and therefore any  
values within the equation can be swapped without altering the essential form of the equation. 
With this knowledge, we conclude that the spherical Law of Sines is 
 

sin sin sin

sin sin sin

A B C
a b c
r r r

= =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

               (44) 
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Fig. 5: Points A, B, and C connect 
London, New York City, and the North 
Pole to form a spherical triangle. 

Fig. 6: Points A, B, and C connect London, New York 
City, and the North Pole to form a spherical triangle 
with the required values to apply the spherical law of 
cosines. 

 
Application of Spherical Trigonometry 
 
 Spherical trigonometry’s primary real 
world application involves calculating the shortest 
distance between two cities. Airplanes travel 
along the great circles of the Earth for the most 
efficient trip. 

 
Given only the latitude and longitude values of 
London and New York City and the radius of the 
earth, we can solve for the distance between 
London and New York City using the laws that 
we previously derived for spherical triangles. The 
latitude and longitude values were converted into 
distances by multiplying the circumference of the 
earth by the degree values. 
 
 
 
            Radius of the Earth:  r = 6738.1 km [4] 
 Circumference:  C = 40,075.784 km 
 New York City:  Latitude: 40°47’N [5] = 40.738°N = 4539.9 km 
    Longitude: 73°58’W [5] = 73.967°W = 8233.9 km  
 London:  Latitude: 51°32’N [5] = 51.533°N = 5736.6 km 
    Longitude: 0°5’W [5] = 0.083°N = 9.2395 km 
 
The spherical triangle pictured above is not useful in finding the distance between  
NYC and London unless a, b, and ∠C are known. However, these distances can be found by 
sectioning off the circumference into four parts. The section in which both NYC and London lie 
possesses latitude values which measure the distance north of the equator; therefore, by dividing 
the circumference by four (10018.7) and subtracting the latitude distances, we calculated the 
sides that extend from the two cities to the North Pole (sides a and b). Since both longitude 
measurements are west of the Prime Meridian, we concluded that ∠C is the difference between 
the degree quantities of the longitudes (73.9°). 

 
Using the spherical Law of Cosines (42), we solved for the distance between NYC and London. 
The final answer that we arrived at was 5701.9 km. 
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PART V: THE CELESTIAL SPHERE 
 

 We have been able to determine the 
value of θ, the angle between the sun and the 
Earth from a heliocentric perspective.  
However we have a different perspective of 
the stars and planets in the sky.  From Earth, 
the celestial bodies we see in the sky lie on 
what is called the Celestial Sphere. The 
Celestial Sphere is an imaginary rotating 
sphere of infinite radius with Earth at its 
center. The Earth’s poles and equator are 
projected onto the Celestial Sphere. If we can 
calculate the location of celestial bodies with 
respect to the celestial sphere, then we can find 
them in the sky. 
 
 
 
 

 
 
 

 
 
As the Earth revolves around 
the sun (shown in Fig. 1), the 
value of θ constantly 
changes.  In order to relate 
the heliocentric and 
geocentric perspectives, we 
must understand what angle θ 
is.  In Fig. 1, θ is the angle 
between the Earth and its 
perihelion with the Sun at the 
vertex.  In the geocentric 
view (Fig. 7), θ’ is the angle 
between the Sun and its 
perihelion with the Earth at 
the vertex.  Consider the 
situation when the Earth and the  
Sun are closest. (Fig. 8). 
 
 

Fig. 7: Geocentric view of solar revolution. 

Fig. 8: Earth and Sun at perihelion. 
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At this point, the Sun and Earth are at their 
geocentric and heliocentric perihelia, 
respectively.  Now allow the Sun to 
revolve around the Earth, as observed in 
the sky, while translating the perihelion 
(Fig. 9). 
 
Because of parallel segments, θ’ = θ.  
Now that we have related the heliocentric 
and geocentric views, we can locate 
celestial bodies in the sky.  Referring to 
Fig. 7, ω is the argument of perihelion, a 
constant term that gives the angle between 
the autumnal equinox and geocentric 
perihelion where ω = 1.797 [6]. When in 
the reference frame of the Celestial 
Sphere, it is more convenient to refer to λ 
instead of θ.  Thus, we can calculate: 

λ= θ+ω - π                       (45) 
 

 
 
The Right Ascension and Declination of the Sun 
 

Our goal in this section was to find the right ascension (α) and declination (δ) of the Sun 
at any given time once we calculated the value of λ.  Fig. 10 represents the celestial sphere, 
which has a geocentric format.  Therefore, we are assuming that the Sun orbits around the Earth 
as it seems to do in our sky.  On the Celestial Sphere, the Celestial Equator is a projection of the 
Earth’s equator onto the sky, and the North and South Celestial Poles are directly above the 
Earth’s north and south poles, respectively. λ represents the angle the Sun forms on its yearly 
orbital path at any given time with respect to its position at the vernal equinox.  Right ascension 
and declination are the coordinates of an object (in this case the Sun) on the celestial sphere.  The 
right ascension represents the horizontal angle the Sun forms with respect to its position at the 
vernal equinox.  It is measured in hours, minutes, and seconds with 24 hours corresponding to a 
full orbit.  Declination represents the angle the Sun forms north or south with respect to the 
celestial equator and is measured in degrees (positive corresponding to north and negative to 
south).   
  
 
 
 
 
 
 
 

 Fig. 9: Earth and Sun with translated perihelion. 
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We know that ε equals 23.5° because 
that is the tilt of Earth’s spin axis 
relative to its orbital path. Therefore, 
it is also the angle of the Sun’s 
orbital path assuming that the earth is 
stationary. Also, δ measurements are 
by definition perpendicular to the 
celestial equator.  All sides of the 
triangle formed by the right 
ascension, declination, and the Sun’s 
path are parts of great circles. 
Therefore, we can calculate the right 
ascension, δ. We plugged in our 
proper variables into (44) to obtain:  
 

sin sin sinδ λ ε=       (45) 
 
 
 
 

 
 
 
We used the spherical Law of Cosines to calculate the declination. When we substituted our 
variables in for the spherical Law of Cosines (42), we got the formula:   

coscos
cos

λ
α =

δ
                (46) 

 
Calculating the Time of Sunrise and Sunset 
 

By using the calculated value of δ we can 
determine the amount of time the sun has been in 
the sky at noon, and subsequently the time of 
sunrise and sunset. Knowing δ and right ascension 
for a given date, we can predict the time for 
sunrise and sunset.  In the diagram of the Celestial 
Sphere (Fig. 11), φ represents the latitude of our 
location and the angle between our horizon and 
the north celestial pole, approximately 40.75°. H 
represents the distance the Sun travels from 
sunrise to noon, which can be converted to the 
length of time the sun has been in the sky. To 
perform our calculations, we need to find the 
value of H. 
 
 

Fig. 11: The motion of the sun on the 
celestial sphere over the course of one day. 

Fig. 10: Right ascension (α) and declination 
(δ) of the sun. 
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 We can derive the arc lengths and angle measures of the triangle formed by the Earth, the zenith 
(the point on the Celestial Sphere intersected by a line drawn from the center of the Earth to the 
observer’s location on the Earth’s surface), and the North Celestial Pole. The angle between the 
zenith and the horizon is 90°, and the angle between the North Celestial Pole is φ.  Therefore, the 
angle between the zenith and the North Celestial Pole is 90 - φ degrees.  We want to solve for the 
angle H.  It is possible to do so using the available data and spherical Law of Cosines.   

cos90° = sin (90°- φ)sin (90° - δ)cos H + cos (90° - φ)cos (90° - δ) 
                                              H = 106.0895379° = 7 hours 4 minutes 
We now know that the sun has been in the sky for 7 hours and 4 minutes at noon on August 3, 
2006. Accounting for Daylight Savings Time, we calculated that the sunrise would be at 5:56 
AM and sunset at 8:04.  Using the calculated value for λ for August 3, 2006 and (46), we found 
the declination of the sun to be 17˚15'25''.  Then, with (46), we calculated the right ascension to 
be 8h 57min 37s. 
 
PART VI: CONSTRUCTION OF A SUNDIAL 
 

A more practical application of celestial mechanics is the construction of a working 
sundial. To do this, we first place a stick of length L on the ground at an elevation of 40.75°. We 
must determine the angle θ that the stick’s shadow casts with respect to a reference line. The 
reference line corresponds to the shadow cast by the sun at exactly 1PM, and by determining θ 
for specific times, we can construct a working sundial.  
 
First, we realize that because the Earth rotates 360° in one day, and there are 24 hours in one day, 
a 15° change in the Sun’s position corresponds to one hour.   

 
Fig. 12 shows a tilted great circle 
within a sphere, with the sun lying 
on the great circle on a 15° angle in 
respect to the y-axis (this 
corresponds with the position of the 
sun at 12PM). The y-axis on the 
great circle corresponds to the 
position of the sun at 1PM, while the 
angle φ (which is approximately 
40.75°, our latitude) corresponds to 
the angle of elevation of a stick of 
length L rising from the ground at 
the center of the sphere along the z-
axis of the tilted axes. As previously 
stated, we will find the angle θ. 
 
Because the stick lies along the z-
axis, the coordinates of the     

     stick in the plane of the greater   
     circle is  

(0, 0, L). 

Fig. 12: A great circle describes the path of the sun 
across the celestial sphere. 
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We draw a line of distance R from the spherical center to the sun (the height of the stick is 
negligible in comparison to the large value of R). The coordinates of the sun at 12PM are 

(-Rsin15°, Rcos15°, 0). 
To continue, we transform the coordinates of the sun and stick on the tilted axis to coordinates 
with the xy plane being the level ground, and the z axis being perpendicular to the ground. To 
convert these coordinates in terms of x’, y’, and z’, we use right triangles. Note that the x-axis 
does not change with rotation. For the stick, we draw a right triangle.  
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, the coordinates of the stick in the new plane are  

(0, -Lcosφ, Lsinφ) 
Next, we consider the new coordinates of the sun, and construct a new triangle. 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
Therefore, the coordinates of the sun in the new plane are 

(-rsin15°, rcos15°sinφ, rcos15°cosφ).  
In order to calculate the angle of the shadow, we must determine the equation of a line of a ray 
from the sun that strikes the stick.  This can be determined from the two points we have already 
calculated for the tip of the stick and the sun: 
 
 
 

       L 

       φ 

       y-axis 

       z-axis 

-Lcosφ 

Lsinφ 

       y-axis 

       z-axis 

       Rcos15° 

       90 - φ 

Rcos15°sinφ 

Rcos15°cosφ 

sin sin
cos sin ( cos cos sin )
cos cos ( sin cos cos )

x R R t
y R L R t
z R L R t

η η
η φ φ η φ
η φ φ η φ

= − +
= + − −
= + −

Fig. 13: Coordinates of stick 
after rotation of plane . 

Fig. 14: Coordinates of Sun after 
rotation of plane. 
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The shadow on the ground can be calculated from the extension of the line into the x’-y’ plane, 
which is given when z = 0. 

cos cos
sin cos cos

Rt
L R

η φ
φ η φ
−

=
−

 

 
Substituting t back into the equations for x and y and dividing the two gives us: 

tan tan sinx
y

θ η φ= =  

from which we can calculate the angles for all of the hours of the day: 
 
Time Θ 
9:00 AM -48.65° 
10:00 AM -33.27° 
11:00 AM -20.75° 
12:00 PM -9.97° 
1:00 PM 0° 
2:00 PM 9.97° 
3:00 PM 20.75° 
4:00 PM 33.27° 
5:00 PM 48.65° 
 
CONCLUSION 
 

The overall objective of this project is to determine a way to use celestial mechanics to 
determine the positions of celestial bodies in relation to the Earth and the sun, and to also use this 
same knowledge for measurements on Earth, such as distance and time. Ultimately, from a basic 
understanding of Newton’s Law and spherical geometry, we completed the objectives and 
generated a series of calculations that would yield information about both our planet and the 
other celestial bodies in our solar system. 

First, from our own derivation of Kepler’s Laws and an analysis of elliptical motion, we 
discovered an equation to calculate the position (both distance and angle) of any celestial body in 
its respective elliptical orbit to the sun. We furthermore derived a new Law of Sines and Law of 
Cosines to describe the angles and side measures of triangles on a sphere. These laws were 
applied to real life situations to determine the distance between the cities London and New York. 
More work was also done with the relationship between the earth and the celestial sphere to 
further pinpoint the location of the celestial bodies. Last, a sundial was successfully constructed 
that could effectively tell time to a high degree of accuracy, and later we successfully predicted 
the time of sunrise using the produced equations. Therefore, the objectives of this research 
project were successfully met, and an accurate system of predicting planetary motion was 
produced. 

Celestial mechanics has ultimately proved to be a practical study through which a large 
amount of useful information can be derived. Now, as we look to the stars and other planets, we 
can see them in a new perspective, with a new understanding of how they move, and how we can 
predict their movements using mathematics.  
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