
PRINCIPLES OF RADAR TARGET TRACKING

Stephen Chan, Brian Dai, Adam Lloyd, Jonathan MacMillan,
Alexander Morrison, Joshua Newman, Michael Sobin

 Advisor: Mr. Randy Heuer
 Assistant: Zachary Vogel

ABSTRACT

Tracking targets with radar is an important step in ensuring safety in such endeavors as
air travel or military operations. To account for inherent inaccuracies in raw radar measurements
of position, and to obtain accurate velocity data, we implemented an algorithm called the Kalman
Filter. The resulting track data was used, in conjunction with algebraic and trigonometric
methods, to simulate target interception and collision prevention. Our system led an interceptor
aircraft to its target and warned pilots of a potential collision, proving the effectiveness of our
filter.

INTRODUCTION

Goals of Radar Tracking

Radar is a tool which measures the position of targets. Radar tracking uses the
information from the radar system along with an appropriate algorithm to determine the track of
a target. Using the information generated by the radar system and the algorithm, the radar
tracking system can be used for more sophisticated tasks such as sending an interceptor at any
moving target as well as predicting and preventing a collision between two targets.

Complications from Radar Measurement

A radar system alone is insufficient for tracking targets. Radar can only measure the
position of an object, not its velocity. There is also noise found in all radar measurements that
leads to error in collected data. This noise comes in two forms, state noise and measurement
noise. State noise occurs as a result of changes that affect the target’s position and velocity, or
state, such as pilot control inputs and weather conditions. The measurement noise is inherent in
all radar systems and occurs when noise generated by the device or external sources interferes
with the measurement [1].

KALMAN FILTER

The Kalman filter [1] is an efficient algorithm for estimating the state of a process that
varies with time and has inherent Gaussian noise. It is an appropriate choice for the tracking
problem for several reasons; it is computationally simple, estimates the error in its predictions,
copes with measurements taken at inconsistent time intervals, and can be extended to track many
targets simultaneously.

 [5-1]

This algorithm was developed in the early 1960s by Rudolf Kalman to track spacecraft
[2]. It includes in its calculations adjustments for both measurement noise and state noise, and is
able to predict with increasing accuracy the state of a process.

Unlike some alternatives, the Kalman filter does not store all past measurements. Instead,
it stores internal representations of error, which incorporate all previous measurements. This
makes the filter simple and relatively easy to implement, allowing it to work in real time.

Model

The filter uses matrices to store all data, including state, error, and noise information. The
algorithm estimates the time-varying state x and accounts for Gaussian noise. It also relates the
obtained measurement to the true state of the object of measurement. Thus, the noisy process can
be expressed as the following:

kkk

kkk

rHxy
qΦxx

+=
+=+1 (1)

 (2)

Equation (1) shows that the true state xk + 1 at a time step k + 1 is the sum of a
transformation, multiplication by Φ, of the previous state xk and state noise q that is an instance
of normally distributed noise at that time step. Equation (2) expresses the measurement yk, such
as that given by radar, as a function of the true state at time step k. The measurement is given by
multiplying transformation matrix H by the state and adding an instance of normally distributed
random noise, rk. The measurement does not exactly reflect the true state because of the noise, so
the objective of the Kalman filter is to estimate the true state as closely as possible from all
available noisy measurements. To do this, the algorithm uses the known state information to
forecast the state at the time of the next measurement, then uses measurement data to correct this
prediction. The algorithm’s improvement in accuracy over raw measurements comes from
judging whether the prediction or measurements should be weighted more heavily in determining
the new state.

Predict

In this first phase of the algorithm, no measurement data is used. Instead, given a time
step specifying the time difference between the last measurement and the next measurement,
predictions of the new state are made in equation (3) and predictions of the new state covariance,
P, are made in equation (4). Error matrix Q specifies the known covariance of the state noise,
which defines the greatest accuracy with which the state may be known.

QΦΦPP

xΦx

+=

=

+

+

T
kkk

kkk

|1

|1 ˆˆ (3)

 (4)

The notation xk+1|k represents the value of x at time step k + 1 when data up to time step k
is known. Thus, the equation (3) predicts the state and equation (4) predicts the state covariance
at time step k + 1.

 [5-2]

Correct

After the prediction is made, new measurement data stored in yk is utilized. To properly
estimate the measurement error here, the measurement covariance matrix R contains variances
and covariances of the measurement data. The Kalman gain matrix K an intermediate matrix and
is the means by which the weighting is performed. The value of this matrix is used to correct the
value of the state and state covariance matrices.

[]
[]

[] 1||

1|1||

1
1|1|

ˆˆˆ

−

−−

−

−−

−=

−+=

+=

kkkkk

kkkkkkkk

T
kk

T
kkk

PHKIP
xHyKxx

RHHPHPK (5)
 (6)
 (7)

Because new data is being used to refine the state prediction, the notation used is slightly
different: k refers to the time step being currently updated, and k – 1 represents the previous time
step (in the predict phase, these were k + 1 and k, respectively). Equation (5) calculates the
Kalman gain, the weighting between prediction and measurement. This is used in equation (6),
which actually corrects the predicted state. Finally, the equation (7) corrects the state covariance
matrix.

Iteration of these prediction and correction steps as new measurement data become
available provides an efficient solution for the problem of radar tracking.

IMPLEMENTATION OF FILTER

Our implementation of the Kalman filter was written in the Microsoft's Visual Basic
.NET programming language. We had available a matrix library, Matlib [3], capable of handling
all necessary matrix operations. The value of the state x was chosen to contain position and
velocity, quantities important to the tasks we planned on completing, as shown in equation (8).

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

y

x

v
y

v
x

y
y
x
x

velocity-
position-
velocity-
position-

x (8)

To transform one state into the next, a linear transformation was defined. Velocity and time step,
are translated into a change in position. For a time step of length Δt, the state transformation
matrix is defined in equation (9).

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ

Δ

=

1000
100

0010
001

t

t

Φ (9)

 [5-3]

As described previously, radar measurements provide only position, not velocity. The input to
the filter consists of measured position data in the form shown in equation (10).

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

m

m

y
x

y
x

position- measured
position- measured

y (10)

The corresponding transformation matrix H, as determined from the model’s equations must be
as defined in equation (11).

⎥
⎦

⎤
⎢
⎣

⎡
=

0100
0001

H (11)

The error matrix Q contains variances and covariances of state error, representing the process
noise inherent in the radar tracking process. The elements are specified in equation (12). This
matrix represents the error statistics of state noise q from the Kalman filter model.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2

2

2

2

yyyxy

yx

yxxxx

yx

vvyvvvx

vyyyvyx

vvyvvvx

vxyxvxx

σσσσσσσ
σσσσσσσ
σσσσσσσ
σσσσσσσ

Q (12)

Lastly, the error matrix R, describing the measurement error, is defined in equation (13). This
corresponds to the measurement error term r in the model.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= 2

2

mmm

mmm

yyx

yxx

σσσ
σσσ

R (13)

To use the algorithm, the state x must be initialized. The position terms may be read
directly from radar measurements, but radar does not measure velocity so the velocity must be
calculated. A simple and effective initialization is to use the average velocity between the first
two available measured positions. Call the first two position measurements (x0, y) and (x , y0 1 1),
separated by time difference Δt. The initialization of x is as follows in equation (14).

()

() ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ−

Δ−
=

tyy
y

txx
x

01

2

01

2

0x (14)

 [5-4]

BASIC SCENARIOS

2-D Cartesian Coordinates

The first scenario for target tracking with the Kalman filter involved data provided in
Cartesian form. This basic data form allowed for easy implementation since the coordinate
system the filter uses was the same as the one in which the data were measured. Though radar
data of this form were not realistic, the form was conducive to initial testing of filter code.

After initializing the filter, we ran the program to test if it worked. Our program yielded
favorable results as the distance from our prediction to the actual location of the object
diminished. This difference, called the residual, is shown in equation (15), where and
represent the estimated values of x and y predicted by the filter at a given time and x and y
represent the actual position of the target at that time. The residual of the measured data can be
found using equation

x̂ ŷ

x̂ with the measured positions of x and y used for and . ŷ(15)

 22)ˆ()ˆ(yyxxresidual −+−= (15)

After a small number of radar measurements, the residuals for our prediction became less
than those of the measured data (Fig. 1). This meant that there was less error in our predictions
than in the radar measurements. As time progressed, the accuracy of the filter increased due to an
increased number of measurements. We had successfully compensated for the state and
measurement noises in our program.

0

0.5

1

1.5

2

2.5

3

0.0
25

0

0.0
41

7

0.0
58

3

0.0
75

0

0.0
91

7

0.1
08

3

0.1
25

0

0.1
41

7

0.1
58

3

0.1
75

0

0.1
91

7

0.2
08

3

0.2
25

0

0.2
41

7

Time (hr)

R
es

id
ua

l (
m

i)

Our Residual
Raw Data residual

 Fig. 1: Residuals for Cartesian Coordinates

 [5-5]

Range and Bearing

Transforming Coordinates

In the previous scenario we showed that our implementation of the Kalman filter works,
but in real life data is never measured by radar in Cartesian coordinates. Radar systems report the
location of an object in range and bearing. The range is the distance the object is from the sensor
and the bearing is the angle measured from North to the object (Fig. 2). Converting these figures
to Cartesian coordinates is necessary before running the filter because our filter is designed to
use only Cartesian inputs.

 Fig. 2: Conversion from Range and Bearing to Cartesian

The first step in the conversion is to convert the range and bearing measurement to one
that the filter can use. The computer computes angles based on polar coordinate systems rather
than the range and bearing system. To convert, we simply use equation (16). Using this value for
the angle, we can now convert rather easily to Cartesian coordinates using equations (17) and
(18), where r is the range and θ is the polar angle. These conversions are displayed in Fig. 2.

θ
θ
αθ

sin
cos

90

ry
rx

=
=

−= (16)
 (17)
 (18)

These coordinates can then be used in the filter as they were in the previous example.

 [5-6]

Transforming Error

Converting the range and bearing to Cartesian coordinates does not completely solve the
dilemma posed by the range and bearing measurement. The measurement error must also be
adjusted. This will affect the measurement covariance matrix, R, used in the calculations. With
Cartesian measurements, the error of the measurements traces an ellipse with major and minor
axes parallel to the x and y axes around the point. In our previous scenario the x and y errors
were the same and so they defined an circle. When polar coordinates are used, the axes of this
ellipse are no longer parallel to the x and y axes (Fig. 3).

 Fig. 3: Conversion of Range and Bearing Error to Cartesian

To convert the measurement errors of range and bearing into the covariance matrix we
must use a series of transformations. In equations (19), (20), and (21), and are the

variances of the x and y measurements and is the covariance of x with y. These are the same

terms found in the R matrix defined in equation

2 2

2

2 2

yσxσ

xyσ

(13). The terms , and are the variances of
the range and bearing measurements respectively, θ is the measured bearing, and R is the
measured range [4].

θσrσ

[]2222

222222

222222

2sin
2
1

cossin

sincos

θ

θ

θ

σσθσ

θσθσσ

θσθσσ

R

R

R

rxy

ry

rx

−=

+=

+= (19)
 (20)

 (21)

These transformations define the new measurement covariance matrix, which is a linear
representation of the true uncertainty. Whereas when receiving data in Cartesian coordinates the

 [5-7]

2covariance of x and y, σ xy, was zero, it now takes on a value due to their dependence on each
other.

Our Results

Using the transformations to Cartesian coordinates of the measurements and
measurement errors, our tracking filter produced the residuals seen in Fig. 4. Our residuals are
better than those of the raw data, showing that our filter can effectively track the target even
though the radar measures range and bearing.

0

0.5

1

1.5

2

2.5

0.0
16

7

0.0
25

0

0.0
33

3

0.0
41

7

0.0
50

0

0.0
58

3

0.0
66

7

0.0
75

0

0.0
83

3

0.0
91

7

0.1
00

0

0.1
08

3

0.1
16

7

0.1
25

0

0.1
33

3

0.1
41

7

0.1
50

0

0.1
58

3

0.1
66

7

0.1
75

0

0.1
83

3

0.1
91

7

0.2
00

0

0.2
08

3

0.2
16

7

0.2
25

0

Time (hr)

R
es

id
ua

l (
m

i)

Residual
Raw Data residual

 Fig. 4: Residuals of Range and Bearing

Multiple Radar Tracking

The third case introduced an additional element of complexity to the filter. Building on
the information input of the past two cases, we now get out information from two different radar
systems, neither located at the origin in the Cartesian plane. To use the data from the radars, the
position readings had to be translated. By adding the location of the radar system to each data
point the radar produced we are able to translate the data into a form that the filter can use.

The reason that multiple radars are used is because they can produce more accurate
predictions. When two radar systems view an object, the error ellipse becomes the intersection of
the two ellipses (Fig. 5).

 [5-8]

Fig. 5: Reduced Error
From Multiple Radars

With a smaller error ellipse, the residuals drop considerably (Fig. 6). The second radar system is
introduced into the problem at timestep 0.1083 hours. At this time, a spike in error is seen on the
residual plot due to a difference in angle. A few timesteps afterwards when the second radar is
working along with the first one, the average residual becomes much smaller, as shown in Fig. 6.

0

1

2

3

4

5

6

7

8

0.0
25

0

0.0
33

3

0.0
41

7

0.0
50

0

0.0
58

3

0.0
66

7

0.0
75

0

0.0
83

3

0.1
00

0

0.1
08

3

0.1
25

0

0.1
33

3

0.1
41

7

0.1
58

3

0.1
66

7

0.1
91

7

0.2
00

0

0.2
08

3

Time (hours)

R
es

id
ua

l (
m

ile
s)

Our Residual
Raw Data Residual

 Fig. 6: Residuals from Multiple Radars

Tracking Multiple Targets

In real radar systems, there is rarely one object in the sky. Almost all tracking systems
handle multiple targets, so there must be a method of doing this. When used correctly, multiple
instances of the Kalman filter can actually be used to follow track targets, and its efficiency and
simplicity allow it to do this without requiring sophisticated computing equipment.

 [5-9]

To track multiple targets, the radar system must run the algorithm separately for each
target. This approach considers each target independently, using the data for each target solely to
update that target’s state. Data associated with the algorithm is separate for target, as well. Thus,
the problem lends itself well to an object-oriented approach (Fig. 7).

Target

x P Q R Φ H
Predict with Δt
Correct with y

Target 1

x1 P1 Q1 R1 Φ1 H1
Predict with Δt1
Correct with y1

Target 2

x2 P2 Q2 R2 Φ2 H2
Predict with Δt2
Correct with y2

 Fig. 7: Object-Oriented Design

After implementing a system for two targets with two instances of the Kalman filter
tracking algorithm, we found the results were as expected: the filter correctly tracked each object.

-30

-20

-10

0

10

20

30

40

-20 -10 0 10 20 30 40

X position

Y
po

si
tio

n

Truth Track Plane 1

Our Data Plane 1

Raw Data Plane 1

Truth Track Plane 2

Our Data Plane 2

Raw Data Plane 2

 Fig. 8: Tracks of Multiple Targets

 [5-10]

When compared to the truth data (Fig. 8), to which random noise was added to generate
the simulation’s measurements, the tracking algorithm’s output more closely followed the true
track of the target, proving the effectiveness of the implementation.

PRACTICAL USES OF THE FILTER

Collision Prevention

One very important use of radar in air-traffic control is to prevent aircraft collisions. Of
course, warning of a potential collision must be provided in advance, to ensure that pilots have
time to correct the situation. Considering any distance less than one mile to another target to be a
dangerous range when aircraft are at the same altitude, the collision prevention algorithm must
warn pilots when they are potentially in danger of colliding with another target in the future.

Algorithm

The algorithm will check for a potential future collision whenever two targets are within
twelve miles of each other, as shown in Fig. 9. If a collision is predicted, the algorithm will warn
the pilots at that point, far in advance.

12 mi

1 mi

Actual positions

Predicted positions

DANGER! ()22 ˆ,ˆ yx

()11 ˆ,ˆ yx

11 , yx vv
22 , yx vv

()11 , yx
()22 , yx

 Fig. 9: Extrapolation in Collision Prevention

To perform this check, first define t = 0 to be the present time. Next, express the position
of the plane at any time t in the future as a function of current positions (x1, y), (x1 2, y2) and
velocities <v , v > and <vx1 y1 x2, v > of target 1 and target 2, respectively, as in equations (22), (23), y2
(24), and (25).

 [5-11]

tvyy
tvxx

tvyy
tvxx

y

x

y

x

222

222

111

111

ˆ
ˆ

ˆ
ˆ

+=
+=

+=
+= (22)

 (23)
 (24)

 (25)

The pilots must be warned when the distance between these planes is less than one mile, a
condition expressed in inequality (26):

 () () 1ˆˆˆˆ 2
12

2
12 <−+− yyxx (26)

Substitute for the predicted positions, and define the following quantities, equations (27), (28),
(29), and (30), to simplify the inequality (31):

12

12

12

12

yyy

xxx

vvv
vvv
yyy
xxx

−=Δ
−=Δ
−=Δ
−=Δ (27)

 (28)
 (29)

 (30)

 in t is obtained: A quadratic inequality (32)

() () 122 <Δ+Δ+Δ+Δ tvytvx yx
 (31)

() ()() () () ()() 01 2 22222 <−Δ+Δ+ΔΔ+ΔΔ+Δ+Δ yxtvyvxtvv yxyx
 (32)

The inequality can be solved by finding the zeroes of the quadratic function on the left
side of inequality (32). The coefficients to be substituted into the quadratic formula to find these
zeroes are specified in equations (33), (34), and (35).

() ()
()

() () 1

2
22

22

−Δ+Δ=

ΔΔ+ΔΔ=

Δ+Δ=

yxc

vyvxb

vva

yx

yx
 (33)
 (34)
 (35)

The solution, if it exists, is a set of real number values of t that satisfy in the inequality. If there is
no solution or if both endpoints of the interval are negative, there is no time t in the future in
which the planes will be within one mile of each other. If any subinterval within this interval is
positive, which means there is a solution, the planes will be within one mile of each other in that
interval and the pilots should be warned of the danger.

Testing

We tested this algorithm on sample data in which the planes were on a course that would
take them within one mile of each other. A section of the resulting tracks is shown in Fig. 10.

 [5-12]

0

10

20

30

0 20 40 60

Plane 1
Plane 2
Estimated Collision Interval

 Fig. 10: Collision Prevention Results

The two tracks are the paths of the planes according to the Kalman filter. Each is evaluated
independently until they are within twelve miles of each other. At this point, the algorithm
detects that the planes will be within one mile of each other at some point in the future and warns
the pilots. The positions at the time of warning are the last ones shown on the graph.

Two additional points from the future track of plane 1 are shown to provide some idea of
the predicted collision’s location. The solution to the inequality was an open interval whose
endpoints, in this case, were both positive. Thus, we had two future times between which the
planes would be within one mile of each other. The first point not on a track is the position of
plane 1 at beginning of this time interval and the second point is the position of plane 1 at the end.
However, the filter’s warning was provided in advance, so the pilots would have time to avoid
the potentially dangerous situation.

Maneuvering Targets

Up until this point, all of the targets we have tracked were moving in straight lines. In
real life this is not always the case. The filter must be able to account for maneuvering targets.
Since our implementation of the Kalman filter is designed for linear motion, we will treat our
target track as a series of linear tracks. In order to track these maneuvering targets, the filter must
be able to recognize when the target object has changed its course and then reinitialize itself
based on the target’s new track.

Determining When the Target has Changed Course

To determine if the object has changed course, we must determine whether or not it lies
in the predicted error ellipse for the measured point. This ellipse is formed by the positional
components of the state covariance matrix and described in equation (25), where nσ represents

 [5-13]

the amount of measurement variance accounted for, is the inverse of , is the inverse

of

1− 2 1−
xyRxxR xσ

yxσσ , and is the inverse of . These σ terms come from the P matrix described in
equation

1− 2

x̂ ŷ

1− 1− 1−

x y

yyR yσ
(4). Term is the predicted x position, is the predicted y position, and x and y are any

x and y values [5].

 121122)ˆ()ˆ)(ˆ(2)ˆ()(−−− −+−−+−= yyxyxx RyyRyyxxRxxnσ (36)

If we allow for n = 1, there a 46% chance that a measured data point will fall inside the
given ellipse if the target has not maneuverd. To increase the probability that a measured point
falls inside the ellipse we must allow for more deviation from the predicted value. We set n = 3,
there is a 98% probability that a measured point lies within the ellipse if the target has not
maneuvered.

The next step is to determine if the object has changed its course. The first step is to
check whether it lies within the 3σ ellipse. Inequality (37), where , , , , and are
the same as in inequality

ŷ xyR yyRx̂ xxR
(36), is the measured x position, and is the measured y position,

will only be true if the measured point lies within this 3σ ellipse.
m m

 212112)()ˆ()ˆ)(ˆ(2)ˆ(σnRyyRyyxxRxx yymxymmxxm ≤−+−−+− −−− (37)

If the point does not satisfy this inequality it lies outside the designated ellipse and
therefore tells the filter the target might have maneuvered. We cannot be certain the path has
changed yet because only 98% of all possible measurements lie within the ellipse. In our
implementation of the filter, three consecutive points that lie outside the state covariance ellipse
will trigger a reinitialization of the filter based on the targets new path. The probability that 3
consecutive measurements will lie outside the ellipse is .4%, so we can be fairly certain the target
has changed its course.

Reinitializing the Filter

Once the filter has determined that the target has changed its course, it must reinitialize
based on the new path. One part of the process is reinitializing the state matrix, x. When the
target maneuvers, the state matrix, x, is no longer accurate. Thus the x, y, vx and vy values must
be reset via the same methods used to originally initialize them. To determine an initial velocity,
we use equation (14) again with the terms x , y , y0 0 1 and x1 replaced by the values of the last two
recorded data points. These points were both outside the 3σ ellipse and thus represent the target’s
new state. The new position of the target is then determined by the last collected data point.

The other part of the reinitialization process is changing P, the state covariance matrix.
As the filter runs, the components of P become smaller and approach the state noise covariance
matrix, Q. This causes the Kalman gain matrix to put more weight on the predicted value than on
the measured value. Once we have determined the target’s course has changed, the weight must
once more be placed heavily on the measured data as opposed to the predictions. To do this, we
set P equal to its value after the original initialization. The variance of the terms in P must be set

 [5-14]

very high again due to the dearth of data used to determine the path. With P reinitialized, the
filter is now set to run based on the target’s new state.

Our Results

Using the processes outlined above, we were able to implement a program that can take
into account the target’s change in direction. In Fig. 11, the path of the maneuvering target is
graphed along with our predicted locations of it.

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

-30 -20 -10 0 10 20 30 40 50

Truth Track
Our Data
Raw Data

Fig. 11: Maneuvering Plane Track

As the target turns, the predicted position will continue in the original direction for a few
data points before turning while the filter is initialized. Fig. 12 shows the graph of the residuals
of our data. The large spikes occur when the target changes course because the filter has not
reinitialized. A few data points later the filter is once more tracking the target with better
accuracy than the radar measurements alone.

 [5-15]

0

1

2

3

4

5

6

7

8

9

0.0
00

0

0.0
33

2

0.0
66

4

0.0
99

6

0.1
32

8

0.1
66

0

0.1
99

2

0.2
32

4

0.2
65

6

0.2
98

8

0.3
32

0

0.3
65

2

0.3
98

4

0.4
31

6

0.4
64

8

Time (hrs)

R
es

id
ua

l (
m

i)

Residual of Us
Residual of Data

 Fig. 12: Maneuvering Plane Residuals

Intercepting a Target

The Process

Using the system we developed for maneuvering targets, we now must intercept one of
these maneuvering targets. We will send an interceptor that travels at a constant speed, vI, to
intercept the target. At each point in time we will instruct it to fly the shortest route to the target’s
position at the time of predicted interception. To do this we will give the interceptor an angle
from the x axis, γ (Fig. 13), at which it must travel to intercept the target each timestep.

 [5-16]

 P
(xT + vTxt, yT + vTyt)

β

γ

I
(xI, yI)

vIt

DistanceTI = d

v DistanceTP = vTt

yT + vTyt – yI

xT + vTxt – xI A

T
(x , y) T T

Fig. 13: Interception Calculations

Fig. 13, where v is the speed of the target, vT I is the speed of the interceptor, vTx is the x
velocity of the target, and vTy is the y velocity of the target, shows the position of the target, T, at
the current time, the position of the interceptor, I, at the current time, and the projected point of
intersection, P. These three points trace out the triangle shown by the darker lines. The angle β in
this triangle is independent of what time, t, the intersection occurs. For example, the triangle
determined by the lighter lines shows a triangle formed at time t = 1 and the angle β is the same
here as it is at any time t. Since the angle has not changed, we can now solve for β by setting t =
1. This yields the following equations where d, defined in equation (38), represents the distance
from the interceptor to the target. Using them we can solve for the angle β, the value of which is
given in equation (39)(40).

)(2
arccos

cos2

)()(

222

222

22

dv
dvv

dvdvv

yyxxd

T

TI

TTI

TITI

−
−−

=

−+=

−+−=

β

β

(38)
 (39)

(40)

Since all the variables in equation (40) are known for any time t, β is valid for all times t.
The next step is to solve for the time t when the interceptor will intersect the target. Once more
using the Law of Cosines to get equation (41) we can derive the quadratic equation (42), for t.
Using the formula for the roots of a quadratic equation to get equation (43), we are able to solve
for two times where the interceptor can intersect the target. If both of these times are positive, we
choose the smaller of the two to expedite the interception. If one is positive and one is negative,
it means the interceptor could have intercepted the target at a previous time but did not and so
now has only one possible course of action, which is determined by the positive time.

 [5-17]

() ()

()
T

I

ITT

TTI

v
vdd

t

vdtdvtv

tdvdtvtv

222

2222

222

1coscos

0cos2

cos2

+−±
=

=−+−

−+=

ββ

β

β (41)
 (42)

(43)

Using this time we can now determine the point of intersection of the target and the
interceptor. With this point, P, and the point I we can find the angle γ that the interceptor must
fly at to intercept the target. By dropping lines parallel to the x and y axes from P and I we get
the right triangle IAP in Fig. 13. Equations (44) and (45), in which x and yT T are the x and y
positions of the target at the current time, vTx and vTy are the x and y velocities of the target at the
current time, and xI and yI are the x and y positions of the interceptor at the current time,
determine the angle that the interceptor must go at to intercept the target as quickly as possible.

ITxT

ITyT

IxTT

ITyT

xtvx
ytvy

xtvx
ytvy

−+

−+
=

−+

−+
=

arctan

tan

γ

γ

(44)

(45)

Our Results

Using this technique we were able to successfully intercept the target. Fig. 14 shows the
paths of the target and the interceptor. It becomes very evident that the program is working
correctly when the interceptor makes a sharp turn. This turn corresponds to the target’s maneuver.
The interceptor gets closer and closer to the target until it finally intercepts the target.

 [5-18]

-140

-120

-100

-80

-60

-40

-20

0

20

40

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50

Truth
Data
Our Results
Interceptor

 Fig. 14: Interception Path

CONCLUSIONS

Our results from the basic tracking scenarios as well as from the interception and
collision prevention test cases show that our implementation of the Kalman filter is indeed
effective. As intended, the filter uses measurements in real time and improves its knowledge of
the target’s location with each passing time step. Our filter effectively handles the state and
measurement noises to provide predictions that become increasingly accurate approximations of
the target’s path. The filter is able to handle data coming at irregular time steps and still
accurately track the target.

Perhaps the most significant result of our work is our ability to build systems that use the
output data from the Kalman filter to perform important real-world tasks. Collision prevention
systems like ours are extremely important in the real-world tracking systems. Air traffic control
uses systems similar to ours to warn pilots of potential collisions so they can change their course.
The ability to intercept targets is of huge importance for the military in its attempt to keep enemy
aircraft from out skies.

Our implementation of the Kalman filter is a great model of what the Kalman filter has
the power to do. This simple, efficient, and effective program is able to accurately track targets
and solve complicated real-world problems.

 [5-19]

REFERENCES

[1] Bishop G, Welch G. 2006. An Introduction to the Kalman Filter.
<http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf>. Accessed 2007 Aug 8.

[2] Kalman, R. E. 1960. A New Approach to Linear Filtering and Prediction Problems. ASME

Journal of Basic Engineering 1960 March.

[3] Anas SA. 2003 Jan 18. Matrix operations library .NET.

[4] Blackman SS. 1986. Multiple-Target Tracking with Radar Applications. Artech House, Inc.

Norwood, MA.

[5] Atwood B. 2003. Covariance and GLAST.

<http://www-glast.slac.stanford.edu/software/AnaGroup/WBA072003-Covariance.pdf>.
Accessed 2007 Aug 8.

 [5-20]

	ABSTRACT
	INTRODUCTION
	Goals of Radar Tracking
	Complications from Radar Measurement
	KALMAN FILTER
	Model
	Predict
	Correct

	IMPLEMENTATION OF FILTER
	BASIC SCENARIOS
	2-D Cartesian Coordinates
	Range and Bearing
	Transforming Coordinates
	Transforming Error
	Our Results

	Multiple Radar Tracking
	Tracking Multiple Targets

	PRACTICAL USES OF THE FILTER
	Collision Prevention
	Algorithm
	Testing

	Maneuvering Targets
	Determining When the Target has Changed Course
	Reinitializing the Filter
	Our Results

	Intercepting a Target
	The Process
	Our Results

	CONCLUSIONS
	 REFERENCES

