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ABSTRACT 
 

The goal of this project was to derive the laws of physics which govern the motion of the 
heavenly bodies.  In order to do this, Kepler’s Laws of Planetary Motion were derived from 
simple physics equations and were then related to laws of geometry.  These laws and 
relationships were then applied to the physical, observable universe by the use of spherical 
trigonometry.  The celestial sphere, the imaginary sphere with the Earth at the center, was used 
as a model for the observable universe.  All celestial objects in the night sky appear to exist on 
the sphere.  Mathematical models can be used to predict the location of any planet on any given 
day.  It is also possible to construct a sundial which can tell the time to a reasonable degree of 
accuracy. 
 
INTRODUCTION 
 

The heavenly bodies have been the subject of study for millennia and in that time have 
acquired a level of unchallengability, as stars and planets disappeared, reappeared, and moved 
across the night sky at regular intervals.  These distant objects have had a profound effect on 
man’s culture and development as a civilization; in the making of calendar seasons, in the 
navigating of the seas, and in the formation of mythology.  Humans have sought to comprehend 
the great natural forces that drive the celestial bodies.  Theories were put forth by Plato, 
Aristotle, Ptolemy, and Copernicus.  However, the key lay in the detailed notes of Tyco Brahe; 
never before had anyone made so many calculations and records of the celestial bodies.  
Fortunately, after Brahe’s death, his notes went to his young assistant, Johannes Kepler.  From 
these records, Johannes Kepler derived what are now known as Kepler’s Laws of Planetary 
Motion.  We now recapitulate the famous analysis of Johannes Kepler and its application to the 
real world. 
  
GENERAL POLAR FORMULA OF AN ELLIPSE  
 
Using Tyco Brahe’s accurate measurements, Kepler observed that the path of a celestial body 
appeared to be elliptical.  Any ellipse with semi-major axis a, semi-minor axis b, foci at 

(±c, 0), and eccentricity e = c/a, has a general equation: 12
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If the ellipse is translated a distance c to the left so that one focus is at the origin, the formula 
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Polar coordinates in terms of an angle θ are more useful for tracking the path of an object about a 
fixed point.  Thus, this equation, which is in rectangular form, must be converted to polar form. 
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Beginning with the horizontal and vertical components of a polar function: θcosrx =  
and θsinry = , and the definition of eccentricity: aec = , we can derive the following relations of 
c and b in terms of the variables a and e: 
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Substituting the components into the general formula gives: 
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This is now a quadratic equation, so we solve for r: 
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The radius r must be positive for the desired equation, so we take the positive root, resulting in 
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Thus, (1) is the equation of an ellipse in polar form with a focus at the origin. 
 
KEPLER’S FIRST LAW 

Figure 1. Ellipse with a focus (the Sun) at the 
origin.  The r and θ in this figure represent the 
same quantities in the following derivation. 

 
Kepler’s First Law of Planetary Motion 
dictates that all planets move in elliptical 
orbits with the Sun at one focus.  To 
derive this law, begin with Newton’s Law 
of Gravitation and his Second Law of 
Motion: 
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Removing the second mass by division 
yields the equation for the acceleration 
vector as a function of orbital radius: 
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A general vector may be broken into its x and y components (Figure 1): 
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Since acceleration is the second derivative of position, in this context, the vector components are 
expressed thusly: 

)2(sin

)2(cos

22

2

22

2

b
r

GM
dt

yd

a
r

GM
dt

xd

θ

θ

−=

−=
 

 
By recursive differentiation, the vector components become: 
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Setting these equations equal to equations (2a) and (2b) respectively yields: 
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By, multiplying (3a) by cos θ and (3b) by sin θ and adding the two equations 2r
GM

−  can be 

isolated: 
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After addition: 
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Multiplying (3a) by sin θ and (3b) by cos θ and subsequently subtracting yields: 
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After subtracting: 
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By integration: 
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Then substitute h, the constant of integration, into (4) 
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Substituting (7) into (6) yields: 
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Rearranging and substituting u for r: 
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This assertion can be corroborated by differentiating twice. 
 
Re-substituting r for u yields: 
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Requiring perihelion (the point in the orbit of closest approach) to be on the positive x-axis 
maximizes the denominator D of (8): 
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Thus the function r is: 
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Note that h, G, and M, are constants (a constant of integration, the gravitational constant, and the 
mass of the Sun, respectively) and thus the equation matches (1), the general formula for an 
ellipse.  Therefore the planets move in an elliptical orbit with the Sun at one focus. 
 

Figure 2. Kepler’s Second Law 

KEPLER’S SECOND LAW 
 
Kepler’s Second Law states that the area swept 
out by a planet during its orbit in a given time 
period is the same for all time periods (Figure 
2). In other words, the rate of change of area is 
constant.  
 
Using the laws of differentiation and integration 
and then substituting h: 
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Thus, the change in A over time is a constant. 
KEPLER’S THIRD LAW 
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Kepler’s 3rd Law states that the square of the period, T, of a planet’s orbit is proportional to the 
cube of the semi-major axis, a, of that orbit.  
 

By basic laws of integration and the fact that 
dt
dA  is a constant: 
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After rearranging:  
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From Kepler’s 2nd Law, the derivative of the area swept out by an orbiting body with respect to 

time is
2
h . 

 
Thus, 
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Substituting abπ for A: 
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This equation is then squared because Kepler’s Third Law deals with the square of the period.  
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Using the relationships between a, b, c, and e (the elliptical constants): 

2

242
2 )1(4

h
eaT −

=
π  

 
As can be seen in Figure 1, the maximum value of the orbital radius is at r = a + c and the 
minimum value is at r = a – c. 
Thus,  
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This equation which employs (9) is then used to solve for h2 at both the minimum and maximum 
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values of r, when cos θ = -1 and 1, respectively. 
This yields: 
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Both values of h2 are substituted into the equation for T2. These equations are then added and 
divided by two. This allows the constant B to cancel from both equations. Again using the 
elliptical constant relationships, the equation is simplified to yield 

GM
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This relationship between T2 and a3 is the final equation that Newton derived from Kepler’s 
general relationship between T2 and a3 of a planet’s orbit, and shows that the two are, in fact, 
related. 
 
APPLYING KEPLER’S LAWS TO THE OBSERVABLE UNIVERSE 
 
Relating an Ellipse to its Circumscribing Circle 
 

Figure 3. The circle circumscribed around the 
elliptical orbit. 

It turns out to be extremely difficult to 
track a planet’s orbit by using angle θ 
alone, so a new and more easily traceable 
angle E is found by inscribing the ellipse in 
a circle. The new angle E is formed from 
the center of the circle to the point on the 
circle formed by the intersection of the 
circle and the perpendicular line extending 
from the x-axis through the planets position 
on the ellipse (Figure 3).  A useful 
relationship between θ and E is determined 
from Figure 3 using simple right triangle 
trigonometry: 
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Then, since this relation is much more useful in terms of tangents and half-angles, it is 
transformed using the formula for the half-angle of a tangent: 
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By constructing a right triangle with the two side lengths used to determine the cosine (the 
adjacent and hypotenuse), and then solving for the third (opposite) side, one finds that:  
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Kepler’s Laws and Elliptical Geometry 
 
The final step in creating a practical application for Kepler’s Laws is to determine the position of 
a planet with respect to time. 
 
Beginning with Kepler’s Equation, which includes some new quantity M: 
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Differentiating and rearranging equation (11) gives: 
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The ratio of the y-coordinates at a given value of x for a circumscribing circle and an ellipse is 

given by 
b
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Using Figure 3 and right triangle trigonometry: 
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Substituting equation (15) into (14) and (1) in for r gives: 
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Next, substitute (16) and (11) into (13) to produce: 
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Rearranging (10) to solve for h in terms of T, a, and b and substituting it into (17) gives the 
result: 
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Since M (0) = 0, the constant of integration C = 0. 
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Real World Application 
 
The next goal is to apply these equations to the physical universe by determining the values for 
M (commonly called the “mean anomaly”), E (commonly called the “eccentric anomaly”),θ , and 
r. 
 
For the planet Earth, T = 365.2425 days [1], a = m [2], and e = 0.0167 [3]. The date of 
the perihelion in 2007 was January 3, 20:00 Universal Coordinated Time [4] or January 3, 3:00 
P.M. local time. 

1110496.1 ⋅

 
On July 25, 2007, t = 203 days (as counted from the perihelion date).  

==
25.365

)203(2πM 3.492 radians 

 
Using e, this value of M, the fact that E is in the third quadrant on July 25, and (12) gives 

radians. 3.489=E
 
Using this value of E and (11), we find θ  to be: 3.484 radians.  
 
(Note: the values for M, E, and θ  are very similar because the Earth’s elliptical orbit is nearly 
circular, e = 0.0167.) 
 
Finally, we use equation (1) to find r =  m. 1110519.1 ⋅
 
SPHERICAL TRIGONOMETRY 
 

Figure 4. A spherical triangle projected onto a plane yields a 
planar triangle. 

Spherical trigonometry is a fundamental tool in the development of the relationships involved in 
celestial mechanics. Spherical 
trigonometry differs from 
planar trigonometry on many 
fundamental properties.  
Using basic properties of 
spherical angles and triangles, 
the spherical Law of Sines 
and spherical Law of Cosines 
were derived. These relations 
were then crucial tools in 
deriving relationships to track 
the motion of celestial bodies. 
 
 
 
Spherical Law of Cosines 
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To derive a relationship between the sides and angles of spherical triangles one can use known 
relationships about planar triangles, including the Pythagorean Theorem, Law of Cosines, and 
Law of Sines.  One must take a sphere with a triangle on the surface and place the sphere on a 
plane, tangent to one of the vertices (in this case, point C) of the spherical triangle.  One can then 
extend the line between the center of the sphere and point A until it intersects the plane at 
point A′ .  Doing the same for point B, there now exists a planar triangle CBA ′′ .  By extending 
the radius OC there now exist two right triangles AOC ′  and BOC ′ (Figure 4).  Using the four 
planar triangles , , AOC ′ BOC ′ BAO ′′ , and CBA ′′ , one can use the aforementioned theorems 
and laws to determine relationships between the sides in terms of the spherical variables A, B, C, 
a, b, c, and R. 
 
The angles of the triangles can be redefined in terms of the arc they sweep out as: 

S = Rθ 
where S is the arc length, R is the radius, and θ is the angle that sweeps out the arc. 
 
Thus: 

R
aOCB

R
bOCA

=′∠

=′∠
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The Law of Cosines as applied to triangle CBA ′′  is: 

Cbabac cos2222 ′′−′+′=′  
  
After substituting (18a) and (18b) and rearranging: 

C
R
b

R
a

R
b

R
aRc costantan2tantan' 22 −+=  

 
Hypotenuses of the right triangles AOC ′  and BOC ′ , respectively: 
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The Law of Cosines as applied to triangle BAO ′′Δ  is: 
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After substituting (19a) and (19b) and rearranging: 
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From simple algebraic manipulation one gets: 
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After rewriting all trigonometric functions in terms of sine and cosine: 
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Simplifying this, one gets the spherical analogue for the Law of Cosines 
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Spherical Law of Sines 
 
Once one has the equation for the Law of Cosines, one can derive sin C from cos C using the 
identity . 1sincos 22 =+ θθ
 
Starting with (20) after algebraic manipulation:  
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Using the Pythagorean Identity sin θ= θ2cos1−  to replace cos C with sin C, yields: 
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After squaring both sides and simplifying: 
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After further substitution and simplification: 
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The right side of the equation is symmetric in a, b, and c, therefore it is a constant for a given 
triangle and one can equate the three terms as: 
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Further simplification yields the Spherical Law of Sines: 
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Practical Application 
 
Distance Between Two Cities 
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An application of the Spherical Law of Cosines is 
finding the shortest distance between two cities 
on the Earth given their latitude and longitude 
coordinates.  One can create a spherical triangle 
with vertices at the two cities and a pole (Figure 
5).  The angular arc length of the side between a 
given city and the pole is the complement of the 
latitude.  This gives the value of two adjacent 
sides.  The angle between them is the difference 
in the longitudes of the two cities.  Given two 
adjacent sides and an included angle, one can 
find the third side, the distance between the 
cities, using the Spherical Law of Cosines.  This 
will yield the angular arc length; the linear 
distance can be found by multiplying the angle 
by the radius of the Earth. 

Figure 5. The shortest distance between 
two cities is the great circle connecting 
them 

 
An example would be finding the distance 
between New York City and London.  The 
coordinates of New York are 40°40’N and 
73°56’W, and those of London are 51°30’N and 0°07’W.  The difference in longitudes would be 
74.05°.   When the triangle is created as above (Figure 5), one gets one side to be 49°20’, another 
side to be 39°30’, and the included angle to be 73°49’.  Using (20), one gets the included side to 
be .8834 radians, and when multiplied by the radius of the Earth (3963 miles) the distance comes 
out to be 3501 miles. 
 
Relating θ, λ, and ω 
 

Figure 6. Diagram of the Universal Reference Line with 
respect to Earth and its orbit

The Universal Reference  
 
As the orbits of the planets are 
different, one must use a 
universal reference for any 
calculations that need to be 
done.  The Universal Reference 
Line is the line passing through 
the Sun and pointing to the 
constellation Aries.  Lambda (λ) 
is defined as the angle between 
the Universal Reference and the 
line connecting the centers of 
the Earth and the Sun at any 
given time.  Theta (θ) is defined 
as the counterclockwise angle 
from the perihelion to the Earth 
with the Sun as the vertex.  In 
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addition, omega (ω) is defined as the angle between the Universal Reference and the perihelion 
(Figure 6).  

 
Observing the relationship between λ, ω, andθ , one finds that: 

πωθλ −+=  
 
The Celestial Sphere 
 

Figure 7. The Celestial Sphere 

For the purposes of astronomical calculations the universe can be modeled as celestial bodies on 
the surface of an enormous celestial sphere centered at the Earth.  The celestial poles are aligned 
with the North and South Poles of the Earth. Similarly, the celestial equator is a great circle 
concentric with the equator of the Earth. Points on the celestial sphere may be located in terms of 
two quantities: right ascension, α, and declination, δ. These two are the celestial equivalents of 
terrestrial longitude and latitude 
respectively. However, unlike longitude, 
the right ascension is measured in terms 
of hours, with 24 hours equivalent to 
360 degrees. This angle is measured 
counterclockwise with respect to the 
Universal Reference Line. Furthermore, 
arcs on the celestial sphere are denoted 
by the central angle that sweeps out that 
arc.  
 
Throughout the course of a year, the Sun 
travels on a great circle, known as the 
ecliptic, with maximum 
declinationε =23.5.  This maximum 
declination is equivalent to the Tropic of 
Cancer on Earth.  One can also write an 
equation relating declination δ  to λ 
andε .   
Applying (21) to the highlighted spherical 
triangle in Figure 7, one finds that: 

Figure 8. Diagram of Sunrise with respect 
to the celestial sphere 

λ

π

δ
ε

sin
2

sin

sin
sin

⎟
⎠
⎞

⎜
⎝
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=  

 
After simplifying: 

λεδ sinsinsin =  
 
Applying (20) to the highlighted triangle, one 
finds that 

⎟
⎠
⎞

⎜
⎝
⎛+=

2
cossinsincoscoscos πδαδαλ  
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After simplifying: 

δ
λα

cos
coscos =  

Practical Application 
 
Sunrise Times 
 
Using these spherical trigonometric laws on the Celestial Sphere, one can determine the 
approximate time of sunrise. Let φ  be the latitude of a terrestrial observer.  Using the spherical 
triangle that is highlighted in Figure 8, one can use the Spherical Law of Cosines to set up a 
relationship amongφ , δ, and H, the angular arc length between the Sun’s highest point in the sky 
and sunrise: 

)22(cos
2

sin
2

sin
2

cos
2

cos
2

cos H⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ −= δπφπδπφππ  

 

Using the fact that cosine and sine are out of phase by
2
π , (22) can be rewritten: 

Hcoscoscossinsin0 δφδφ +=  
 
After simplification: 

)23(tantancos δφ−=H  
 
In order to test the model for calculating sunrise times, the sunrise time was determined for a 
particular day, July 30.  The declination of the Sun for this day was 18°40’ [7], and the latitude 
of the location where the sunrise was recorded was 41°.  Using the values for declinationδ and 
latitude φ  in (23) we found a value for H.  H is the angular measure between the Sun’s highest 
point in the sky and sunrise.  The Sun’s highest point in the sky is normally noon, but July 29 
falls during the daylight savings time period so the Sun’s highest point occurs at 1:00 P.M. 
instead.  This value is an angular measure that must be converted into hours.  The conversion 
factor is 360° = 24 hours.  Once converted, the value must be subtracted from 1:00 P.M. 

δφ tantancos −=H  
'4018tan41tancos °°−=H  

[ ]'4018tan41tancos 1 °°−= −H  
H °≈ 078.107  

 
Converting this into hours, one gets: 

H≈7.139 hours 
H 7 hours, 8 minutes, 20 seconds ≈

 
After subtracting this from 1:00 P.M. the approximate sunrise time is 5:51 A.M.  
 
CONSTRUCTING A SUNDIAL 
 
In order to construct an accurate sundial, the angle of the shadow cast by a stick every hour had 
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to be calculated.  These calculations were performed using a model of a dome to represent the 
sky in the vicinity of the stick and the stick tilted at an angle of ϕ  (equal in value to the latitude 
at which the stick is constructed) towards the north (Figure 9).  
In order to be able to trace the sunrays’ paths to the 
ground and determine where the shadow of the stick 
will be at each hour, the diagram was plotted onto a 
coordinate system, with the x and y axes along the 
plane of the Sun’s path, and the z axis along the stick. 
The Sun rises and travels across the sky, reaching its 
highest point at 1:00 P.M. due to Daylight Savings 
Time. At this time, the stick’s shadow points directly 
north. It is given that the Sun travels 15° in the sky 
each hour. Thus, at 12:00 PM, the Sun is 15° to the 
east of its highest point. The coordinates of the Sun 
(s) and the tip of the stick (T) at this time were 
determined. 

Figure 9. The Sundial with respect to 
the sky in its vicinity.  s represents the 
Sun.

 
The coordinates with respect to the original axes:  

T:(0, 0, L) 
s:(rsin15°, rcos15°, 0) 

 

Figure 10 . The Sundial and its vicinity with 
rotated coordinate axes 

Afterwards, the entire coordinate plane was rotated so that the x and y axes lay along the plane of 
the ground (Figure 10). 
 
The coordinates with respect to the 
rotated axes: 

T:(0, -Lcosϕ , Lsinϕ ) 
s:(rsin15°, rcos15°sinϕ , rcos15°cosϕ ) 

 
The equation of the line that connects the 
two points s and T in three-dimensional 
space was determined and the point at 
which it intersected the x–y coordinate 
plane (also known as the ground) was 
calculated in order to find the angle θ of 
the stick’s shadow at 12:00 P.M.  Note 
that time t is measured in hours. 
 
The line is found to be: 

°= 15sintrx  
)cossin15cos(cos ϕϕϕ LrtLy +°+−=  

)sincos15cos(sin ϕϕϕ LrtLz −°+=  
 
If it intersects the x-y plane, z = 0, therefore, 
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ϕϕ
ϕ

sincos15cos
sin

Lr
Lt

−°
−

=  

 
Substituting t,  

ϕϕ
ϕ

sincos15cos
15sinsin
Lr

rLx
−°

°−
=  

ϕϕ
ϕϕϕϕϕϕ

sincos15cos
cossinsin15cossincos15coscos 2222

Lr
LLrLrLy

−°
−°−+°−

=  

Divide 
y
x  = tan θ 

)sin(cos15cos
15sinsin

sin15cos15coscos
15sinLsin-tan 2222 ϕϕ

ϕ
ϕϕ

ϕθ
+°−
°−

=
°−°−

°
=

Lr
Lr

LrLr
r  

°= 15tansintan ϕθ  
 
This becomes the general equation to find the angle of the stick’s shadow at any hour of the day:  

tan θshadow = sinϕ tan θSun. 

 
The following table (Table 1) was calculated for every hour with ϕ = 41°: 

 
Table 1: Sundial Angles During Daylight Hours 

Time θ Sun θ shadow 
1 PM 0° 0° 
2 PM/12 PM 15° 9.97° 
3 PM/11 AM 30° 20.75° 
4 PM/10 AM 45° 33.27° 
5 PM/9 AM 60° 48.65° 
6 PM/8AM 75° 67.78° 
7 PM/7AM 90° 90° 

 
CONCLUSION 
 
The purpose of this research was to explore the motion of heavenly bodies and apply 
mathematical and physical formulae to track their orbits. Kepler’s Laws became the foundation 
of this project, as they explain the fundamentals of planetary orbits. These laws were derived 
using calculus. Elliptical geometry was then used to confirm that these laws were, in fact, 
Kepler’s Laws. Afterwards, a new Law of Sines and Law of Cosines were derived for use on 
spherical triangles, so that planetary orbits could be viewed as they are from our earthly 
perspective. With these findings, several related problems can be solved. The Law of Cosines 
was used to determine sunrise time, as well as the distance between two cities. Spherical and 
Cartesian geometry was also used to construct a sundial that now accurately tells the time of day, 
once again confirming Kepler’s Laws.  
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	Thus, (1) is the equation of an ellipse in polar form with a focus at the origin. 

