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ABSTRACT 
 

Raw output from radars is often muddled by intrinsic process and measurement noise.  
To create an effective radar tracking system, we used linear algebra and computer science to 
effectively apply a Kalman filter to process raw radar data. We also applied trigonometric and 
other mathematical methods to implement additional features in our tracking system including 
collision prevention and target interception. Both our filter implementation and target tracking 
system proved to be more accurate and more precise than the raw input data. 
 
INTRODUCTION 
 

Radar tracking is a technique used to track any moving object, which becomes important 
in real-life applications such as guiding planes to smooth landings or preventing collisions. To 
track the object of interest, a radar sends out microwaves that echo off an object and send back 
data that a computer uses to calculate its position. 

 
 Despite its growth, the supply of data cannot accurately reflect the true flight plan by 
itself. Two forms of ‘noise’ disturb accuracy; process noise such as wind influences the target, 
while measurement noise comes with the data obtained from the radar. 
 

To help the calculations, a mathematical system called the Kalman filter uses an iterative 
process to filter out the noise. The Kalman filter can estimate the state of the system, while 
taking into account the factor of time and inherent noise. In our project, we needed to combine 
the data obtained by the radar systems as well as the interpretation of an algorithm, in order to 
obtain estimates that would, for example, prevent collisions between two targets. We chose the 
Kalman filter due to its efficiency because the computations are relatively simple to implement, 
and it does not require that previous data be retained.  
 
Rudolf Kalman 
 

Rudolf E. Kalman was a control theorist who was born in Hungary. He received a 
bachelor’s and master’s degrees in science from the Massachusetts Institute of Technology and a 
doctorate of engineering science from Columbia University. Kalman was known for his work 
with filter systems, including the Kalman filter, which is widely used in navigational and 
guidance systems, radar tracking, sonar ranging, and satellite orbit determination. The Kalman 
filter was one of Kalman’s most significant contributions to control and filter theory [1]. 
 
Kalman filter 
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In his paper “A New Approach to Linear Filtering and Prediction Problems”, Dr. Kalman 

introduced his concept of a filter that could appropriately handle random noise and output 
accurate predictive data [2].  
 

In addition to giving an accurate estimate of the target’s position and velocity, the 
Kalman filter also has another key advantage – it is highly efficient in terms of memory usage. 
The filter only retains one prediction and one set of radar measurements at any single time. Each 
new measurement is used to form a new prediction, and then is no longer needed. This aspect of 
the Kalman filter is especially useful when many measurements are taken.  
  
Model 
 

The foundation of the Kalman filter is the following model that shows how the state 
vector is updated and the measurement vector is obtained [2]. 
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Equation 1 describes the actual state of the target. The current state vector, x is multiplied 

by the transition matrix, Φ. This product is then added to vector q, the process noise- the inherent 
variation of the target’s movement, to produce the state vector x for the next time step. At each 
time step, q is a single instance of a randomly varying state noise. Because each q is random, it 
cannot be known. However, the distribution of q can be understood and represented by the 
covariance matrix Q.  
 

Vector y represents the measurement and is calculated by multiplying matrix x by 
measurement vector, which transforms the state into the form of the measurement vector. Then 
the measurement noise vector, r, is added to this product. Like q, r is a randomly varying vector 
that can never be known. Again, however, its distribution, R can be understood and modeled. 
 
Predict 
 

The first step in the Kalman filtering process is the prediction step. The Kalman filter will 
predict the state of the target by using a state estimate from a previous time step to predict its 
state of the current time step. The Kalman filter uses a set of matrix equations to find a prediction 
of the subsequent state vector [3].  
 

ΚΚ
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                      Q+ΦΦΡ=Ρ Τ
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In this equation XK+1|K is the state matrix at time K+1, based on the estimated value at 
time K. 
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The state covariance matrix (P) is an estimate of the uncertainty of the state vector. It is 

also estimated in the prediction step, and is based on the transition matrix and our knowledge of 
the random distribution of the process noise. 
 
Update 
 
 In the update step, a new set of data is gathered, and our results from the prediction step 
are compared with them. First the Kalman gain matrix, a weighting factor that controls how 
much the filter values the measurements, is determined and updated using the state covariance 
matrix, the measurement matrix, and the measurement noise, as shown in Equation 5. It 
determines how much the filter values the data residual when calculating a new state vector in 
Equation 6. Lastly, the state covariance matrix is also updated in Equation 7, based again on the 
Kalman gain matrix. At this point, the filter returns to the predict step, and the process repeats 
[2]. 
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IMPLEMENTATION 
 

The position of our targets is determined by the information obtained from radar 
measurements, and the algorithm corrects this data to filter variant noise. Although a radar 
system can measure the position of an object, using an algorithm will increase accuracy and 
provide an estimate of a target’s velocity. 
 

To compensate for these noisy radar measurements, our implementation of the Kalman 
filter utilizes an efficient algorithm to accurately predict the target’s true position and velocity 
from the position measured by radar. As each new measurement is obtained by radar at each time 
step, the Kalman filter updates its previous prediction, eventually formulating a more accurate 
model, despite the noisy radar measurements. 
 
 In our case, the dimensions we are working with are time, x-coordinate and y-coordinate. 
Thus, our State vector x denotes the position and velocity as follows [3]:  
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In this case Φ is designed as follows to update x and y coordinates by adding the product 
of the given constant velocities ( x& and y& , respectively) and the change in time (Δt):  
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 If we multiply these matrices we get the following equation, which shows how the 
transition matrix transforms the state matrix: 
 
 
 

 
 
 
 
 
In our case, we are only measuring the position of the target, so our measurement vector y 

only consists of the measured x-coordinate and y-coordinate as follows:  
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 Thus our measurement matrix must transform our state matrix so that only contains 
position elements. Thus it takes the following form: 
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To program this filter, we first needed to read the data from the text file. We took the first 

two lines of measurements and initialized the state vector. Then we had a loop that would break 
after the last line was read from the text. Before we ran the filter, we pre-filtered our 
measurements so that they would be in a form usable by the filter which was usually x and y 
coordinates centered at the origin. This pre-filtering occurred in each iteration. Then we ran the 
Kalman filter equations with our new data. Finally we output values in the state vector, or our 
post-filtered data. 
 
 
APPLICATIONS OF KALMAN FILTER 
 
Polar Coordinate Transformations 
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The focus of our research was to apply the Kalman filter to more realistic situations. 
Since radars report range and bearing, the measurements need to be converted to Cartesian 
coordinates using Equations 13 through 15. In the equations, range (r) represents the distance 
between the source and satellite, and bearing represents the angle (α) from true north. This is 
because our Kalman filter program is designed to handle calculations made in the Cartesian 
system.  

 
 
 
 
  
 

In addition to these polar transformations, it is important to consider that the 
measurements are not centered perfectly along the coordinate axis. Due to the standard deviation 
of range and bearing, the overall area in which the target may fly forms a tilted ellipse. The 
elliptical axes are not parallel to those of the Cartesian plane. Thus, it is necessary to update the 
matrix containing information pertinent to measurement error, also known as the “R” matrix.  
The R matrix represents the variance of the X and Y coordinates of the transformed 
measurements, which depends on the location of the target at a point in time. Due to this 
correlation, R matrix is always changing for each position of the target. Fig. 1 displays a visual 
representation of the error calculation that the R matrix compensates for; the ellipse shows the 
uncertainty of the point’s true position. 
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Fig. 1 
Visual representation of estimation method 
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Since the R matrix is used in calculating the Kalman gain matrix, it must be adjusted 
beforehand [3]. These adjustments and transformations allow us to predict targets’ given range 
and bearing measurements. Fig. 2 displays the residuals of our results – the residuals are the 
distances between our filter’s predicted positions and the measurement. Our results are much 
more accurate than the measured values, as evidenced by the lower residual values. 
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Fig. 2 
Polar conversion scenario data residuals 
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Multiple Radars 
 

Another adaptation of our implementation of the Kalman filter is its ability to handle 
input from multiple radars located in different places. With this scenario, the object was tracked 
with two radars – depending on which one was in range – making the incoming data more 
difficult to work with than previous cases. This situation also introduced variable time, since the 
data was no longer coming in on a regular interval. Fig. 3 shows a visual representation of the 
multiple radar scenario. 

 
 

Fig. 3  
Multiple radar scenario 

 
 
 
 
Implementing the code for this situation required two major modifications to our filter. 

First, in order to calculate the newly variant time step, we had to add update the state transition 
(Φ) matrix, which used t each time the loop ran. In addition, since our raw data was now coming 
in from two radars located in different places, we had to tag the data we received to assign it to a 
radar, and then reconcile that data with a single frame of reference. To do this, we simply created 
a coordinate plane in which the two radars were placed off of the point of origin, and then offset 
the data we received by the distance between the origin and the radar.  
  

Our results shown in Fig. 4 followed a different trend than past cases because of the 
addition of a second radar. The filter received data from only the first radar in the beginning; 
thus, the jump in distance residual in the middle of the graph (at 0.1hrs time) is due to inaccurate 
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data from the second radar. The switch shows how quickly the filter compensated and brought 
the residual back down to under 0.5. This is a lower margin of error than the previous scenarios 
because having two radars allows us to obtain a cross-fix on the target much more accurately.  
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Fig. 4 
Multiple radar scenario data residuals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Change in the Course of the Object 
 

This scenario is different from the previous ones in that the target maneuvers. It begins 
on a linear course and maneuvers to different linear courses multiple times. Initially, the Kalman 
filter follows the target on its linear path. Once the our program recognizes that the radar’s 
measurements fall outside a pre-set range of standard deviations, it will reset itself with new 
initial conditions matching those of the target’s new course. This method is known as re-
initialization.  
 
            In order to detect a change in direction, we used a form of the state covariance matrix that 
only includes position elements, which measured the distance between the measured point and 
the predicted value (in the number of standard deviations).  
 

We were able to derive Equation 20 by using the values, highlighted below, from the 
state covariance matrix.  
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Equation 20 is displayed below:  
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In Equation 21, r is the vector between the measured point and the predicted point [4]. 

(21) 

(20) 

 
rCrn T 12)( −=σ where xr (= - x ) 

 
Multiplying this matrix out yields: 
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Fig. 6 
Distance between a point with an error and 
another point measured in σ s 

 
 
 
 
 
 
 
 
 
 
 
 
The distance calculated determines if the target changed direction. In this particular 

scenario, if the number of standard deviations is greater than two, for four radar measurements in 
a row, we can assume that the target maneuvered. Fig. 6 represents this distance visually.  We 
are approximately 99.95% sure that the target has maneuvered, as determined by the two-
dimensional standard Gaussian curve. As a result, the filter reinitializes and resets with the 
following data sets. 
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Fig. 7 
Position of Target given by Data, Our Calculations, and True Values 

Fig. 7 depicts the position given by data, our calculations, and the actual position. 
Although the measurements obtained were noisy, the Kalman filter provided accurate estimates 
that are comparable to the actual position. The darkest line, which is the position given by raw 
data, is irregular and deviates from the actual path many times; our results demonstrate that the 
Kalman filter proved to be quite effective in providing an accurate measure of the target’s 
location.  
 

The residuals, displayed below in Fig. 8, show that the filter can recover quickly after 
each maneuver is made.  
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Residuals for Scenario 5
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Fig. 8 
Maneuvering target scenario residuals  

 
 
Intercepting a Target 
 

Another useful application of the Kalman filter is for intercepting targets. This involves 
projecting the path of the target and directing the interceptor to travel on the shortest possible 
interception course at each time step. In order to do this, we used the Kalman filter estimates to 
predict the target’s course and velocity, and then calculated the bearing angle the interceptor 
would have to travel at to intercept the target.  

 
The scenario is illustrated below in Fig. 9. Point I represents the interceptor, while Point 

T represents the target. Point P is the projected point of interception at time t. To calculate the 
bearing angle that the interceptor would have to travel at, α, we first calculated the value of τ 
using the Law of Sines, as shown in Equations 23 and 24. 
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Fig. 9 
Intercepting targets scenario 
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Then we substituted in values for B
A

and β using Equations 25 and 26, and were able to 

solve for τ using Equation 24.  

I

T

I

T

v
v

tv
tv

B
A

==  (25) 

yx

yx

TT

TTTITI

vvD

vvyyxx

,

,,
(cos 1

•−−
= −β  (26) 

In Equation 27, D, the distance between the interceptor and the target, can be calculated 
through the use of the distance formula. 
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22 )()( ITIT yyxxD −+−=  (27) 

 
Also, γ is the sum of α and τ, due to the parallel vertical dashed lines. As a result, the 

bearing angle, α, can be calculated in Equations 28 and 29. 
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As shown in Fig. 10, we were successful in steadily nearing the target until eventually 
intercepting it. This is especially notable when the target maneuvers, as the interceptor quickly 
reacts and turns towards a new interception point. 
 
Preventing Collisions 
 
 After successfully tracking a target, the same technique can be reused to track multiple 
targets by adding another Kalman filter. As a result, radar tracking can then be used in the real 
world to avoid collisions between multiple targets. Radar tracking must be able to predict several 
flight paths, project a crossing point, and alert pilots to take evasive action whenever in danger of 
collision. Since visual observations are not effective enough, pilots rely on onboard computers to 
relay warnings about possible collisions.  

 
To track two separate targets, we use imported range and bearing. When the two flight 

paths come within 12 miles of each other, the radar should project the future positions of each 
and calculate whether they will ever be within 1 mile of each other.   
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Fig. 10 
Intercepting targets’ positions  

 
 
 In Fig. 10 we are looking at a graph of the position of the target and the interceptor 
dispatched to catch it. 
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Fig. 11 
Preventing collisions scenario 

 
 
 
 
Let (x1,y1) represent the current position of target1 and (x2,y2) represent the current 

position of target2. Also, let (vx1,vy1) and (vx2,vy2) represent the component velocities of target1 
and target2 respectively. 

 
 Then use the distance formula with the two positions to find if the following expression 
holds true: 
 

                           (30) 12)()( 2
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2
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If the above is true, calculate future positions of each target to find whether, 
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Where x̂  represents the future x-position and ŷ the future y-position 
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So let:              

            (32) tvxx x Δ+= 111ˆ
            (33) tvyy y Δ+= 111ˆ
          (34)    tvxx x Δ+= 222ˆ
          (35) 
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tΔ  = time 
 

Substitute the variables in Inequality 31 w les in Equations 32-39 as shown 
below: 

ith the variab

 
1)()( 22 <Δ+Δ+Δ+Δ tvytvx yx  

 
Expand: 
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Solve for Δ t using quadratic formula: 
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Where: 

 
a = yx vv Δ+Δ  
b = xy vv Δ+Δ 22  
c = 1Δ 22 −Δ+ yx  

 
 

se the determinant to find the number of solutions. If: 
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2b – 4ac < 0 targets never travel within a mile of each 

other 
2b – 4ac = 0  get within a mile of each other at targets

one point 
2b – 4ac > 0  within a mile of each other at targets get

one point 
 

hus, if the determinant yields a positive answer, a warning should be issued to pilots of 
both ta  

 mile 

 Table 1 
terminant to find proximity of targets to  

 
 
T
rgets to avoid collision. Since, the warning would occur as soon as they are 12 miles apart,

it would give sufficient time for evasive action.  As shown in Fig. 12, the two targets come 
within 12 miles of each other.  At this point, it is projected that they would come within one
of each other, so the lines stop, indicating that the targets need to would maneuver to avoid a 
collision. 
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The Kalman filter is an effective method of improving the accuracy and precision of 

measur ple 

ffectiveness of Kalman filter

ed coordinates. Even when presented with advanced situations, such as tracking multi
or maneuvering targets, intercepting the targets, and implementing collision avoidance systems; 
the Kalman filter was able to adapt and remain a highly effective tool.   
 
E  

From our data, we can see that the Kalman filter is a very effective tool, even more so 
 

 first 

Our Results’ Average Residual Average Data Residual 

 
 
when given noisy measurements. In all of our residual graphs we can see that after the first few
data points, the residuals of the values we have gotten from the Kalman filter are less than 
residuals of the data. In the following chart, the average residual for each case is listed. The
4 residuals are omitted in each case, because the Kalman filter is most effective when it has run 
for a longer period of time: 
 
 
 
Polar Coordinate 
Transformations 

0.523578 0.995015 

Multiple Radars 1.518172 2.008087 
Change in the 
Course of the Object 

1.033573 1.57557 

Intercepting Targets 
(Target 1) 

1.143326 1.482508 

Intercepting Targets 1.076956 1.420316 
(Target 2) 
Preventing 
Collisions (Target 1) 

2.263782 2.348858 

Preventing 
Collisions (Target 2) 

4.051644 4.264486 

 
 Table 2 

residuals for each case  Average 
 
 
Clearly, the average residual of our results is smaller than the average residual of the 

data. T

 his accuracy is especially important for the very practical scenarios like intercepting 
rgets 

 be no 

Kalman filter is an extremely helpful tool in any radar tracking endeavor. 

his shows that a Kalman filter out performs a radar tracking system only based on 
measurements. 

 
T

ta and preventing collisions. In these cases, results exclusively based on the last two 
measurements would give the same level of accuracy for each step, an accuracy that would
better than the measurement noise and state noise. This lack of accuracy could lead to a failure to 
intercept a target or to prevent a collision of two planes. The Kalman filter, on the other hand, 
becomes more accurate and puts less value in the measurements the longer it runs. Thus the 
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Possible Improvements 
 
 Despite the minor percentage error of our data, measurements should continue to be 

proved. In a real-world situation, objects do not always fly at the same velocity and thus 
little 
 real 
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